

ACS SYMPOSIUM SERIES 592

Parallel Computing in
Computational Chemistry

Timothy G. Mattson, EDITOR
Intel Corporation

Developed from a symposium sponsored
by the Division of Computers in Chemistry

at the 207th National Meeting
of the American Chemical Society,

San Diego, California,
March 13-17, 1994

American Chemical Society, Washington, DC 1995

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
fw

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Parallel computing i n
computational chemistry

Library of Congress Cataloging-in-Publication Data

Parallel computing in computational chemistry / Timothy G. Mattson,
editor

p. cm.—(ACS symposium series; 592)

"Developed from a symposium sponsored by the Division of Com
puters in Chemistry at the 207th National Meeting of the American
Chemical Society, San Diego, California, March 13-17, 1994."

Includes bibliographical references and indexes.

ISBN 0-8412-3166-4

1. Chemistry—Data processing. 2. Parallel processing (Electronic
computers) I. Mattson, Timothy G., 1958- . II. American Chemical
Society. Division of Computers in Chemistry. III. American Chemical
Society. Meeting (207th: 1994: San Diego, Calif.) IV. Series.

QD39.3.E46P32 1995
542'.85'435—dc20 95-1232

CIP

This book is printed on acid-free, recycled paper.

Copyright © 1995

American Chemical Society

All Rights Reserved. The appearance of the code at the bottom of the first page of each
chapter in this volume indicates the copyright owner's consent that reprographic copies of the
chapter may be made for personal or internal use or for the personal or internal use of
specific clients. This consent is given on the condition, however, that the copier pay the stated
per-copy fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright
Law. This consent does not extend to copying or transmission by any means—graphic or
electronic—for any other purpose, such as for general distribution, for advertising or
promotional purposes, for creating a new collective work, for resale, or for information
storage and retrieval systems. The copying fee for each chapter is indicated in the code at the
bottom of the first page of the chapter.

The citation of trade names and/or names of manufacturers in this publication is not to be
construed as an endorsement or as approval by ACS of the commercial products or services
referenced herein; nor should the mere reference herein to any drawing, specification,
chemical process, or other data be regarded as a license or as a conveyance of any right or
permission to the holder, reader, or any other person or corporation, to manufacture,
reproduce, use, or sell any patented invention or copyrighted work that may in any way be
related thereto. Registered names, trademarks, etc., used in this publication, even without
specific indication thereof, are not to be considered unprotected by law.

PRINTED IN THE UNITED STATES OF AMERICA

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
fw

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1995 Advisory Board
ACS Symposium Series

M. Joan Comstock, Series Editor

Robert J. Alaimo
Procter & Gamble Pharmaceuticals

Mark Arnold
University of Iowa

David Baker
University of Tennessee

Arindam Bose
Pfizer Central Research

Robert F. Brady, Jr.
Naval Research Laboratory

Mary E. Castellion
ChemEdit Company

Margaret A. Cavanaugh
National Science Foundation

Arthur B. Ellis
University of Wisconsin at Madison

Gunda I. Georg
University of Kansas

Madeleine M. Joullie
University of Pennsylvania

Lawrence P. Klemann
Nabisco Foods Group

Douglas R. Lloyd
The University of Texas at Austin

Cynthia A. Maryanoff
R. W. Johnson Pharmaceutical

Research Institute

Roger A. Minear
University of Illinois

at Urbana-Champaign

Omkaram Nalamasu
AT&T Bell Laboratories

Vincent Pecoraro
University of Michigan

George W. Roberts
North Carolina State University

John R. Shapley
University of Illinois

at Urbana-Champaign

Douglas A. Smith
Concurrent Technologies Corporation

L. Somasundaram
DuPont

Michael D. Taylor
Parke-Davis Pharmaceutical Research

William C. Walker
DuPont

Peter Willett
University of Sheffield (England)

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
fw

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Foreword

THE ACS SYMPOSIUM SERIES was first published in 1974 to
provide a mechanism for publishing symposia quickly in book
form. The purpose of this series is to publish comprehensive
books developed from symposia, which are usually "snapshots
in time" of the current research being done on a topic, plus
some review material on the topic. For this reason, it is neces
sary that the papers be published as quickly as possible.

Before a symposium-based book is put under contract, the
proposed table of contents is reviewed for appropriateness to
the topic and for comprehensiveness of the collection. Some
papers are excluded at this point, and others are added to
round out the scope of the volume. In addition, a draft of each
paper is peer-reviewed prior to final acceptance or rejection.
This anonymous review process is supervised by the organiz
er^) of the symposium, who become the editor(s) of the book.
The authors then revise their papers according to the recom
mendations of both the reviewers and the editors, prepare
camera-ready copy, and submit the final papers to the editors,
who check that all necessary revisions have been made.

As a rule, only original research papers and original re
view papers are included in the volumes. Verbatim reproduc
tions of previously published papers are not accepted.

M. Joan Comstock
Series Editor

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
fw

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Preface

A P A R A L L E L COMPUTER IS A SUPERCOMPUTER built from simpler
computers. This includes everything from 16 heads of Cray C-90 comput
ers to 3600 microprocessors in Intel's Paragon computers to 16,384 pro
cessing elements in a MasPar MP-2. In every case, the motivation is the
same: How do you get more computing done in less time and for less
money?

Getting more of anything for less money sounds like a smoke-and-
mirrors trick. With parallel computing, however, it isn't a trick. Parallel
computers really do provide the ultimate performance, and because they
are built from simpler (and usually standard) components, they really do
cost less. So why isn't all supercomputing done on parallel computers?

The answer is software. To take advantage of a parallel computer, a
user needs to have software that runs in parallel. Without a "critical
mass" of application software, parallel computers are computer science
research machines or specialized tools for big-budget projects.

So where are we with regard to software? Serious parallel application
development has been going on for a little more than 10 years. We have
learned a lot in the past decade and now understand how to write
software for parallel computers. But have we reached a critical mass of
computational chemistry applications?

I believe we reached critical mass for parallel chemistry software
within the past year. Computational chemists can now find software for
most types of chemical computation. This fact is not widely known out
side of a small group of parallel computational chemists, so I worked with
Michel Dupuis and Steven Chin (both of IBM) to reach out to computa
tional chemists at large with a symposium titled "Parallel Computing in
Computational Chemistry."

The symposium was organized around two types of papers called
"show-and-tell" and "nuts-and-bolts". The show-and-tell papers were
aimed at software users and stressed the scientific problems solved on
parallel computers. The nuts-and-bolts papers were directed at software
developers and covered the algorithms and software techniques used for
parallel computing.

This book is based on that symposium. The connection is a loose
one, however, because the book emphasizes the nuts-and-bolts papers,
whereas the symposium had a more even mix of the two types of papers.

vii

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
pr

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

This nuts-and-bolts emphasis was not by design, but is a reflection of what
the authors themselves felt to be most interesting in their work.

My hope for this book is to reach both novice and experienced paral
lel computational chemists. For the novice, Chapter 1 introduces the
concepts and jargon of parallel computing. To round out this introduc
tion, novice parallel programmers should also read Chapters 2, 3, 9, and
10. Chapters 2 and 3 provide an overview of the parallel ab initio pro
gram GAMESS and describe some of the large calculations it has made
possible. Chapter 10 is a good introduction to how molecular dynamics
codes can be simply parallelized. The chapter includes plenty of pseudo
code to make the discussion as clear as possible. Finally, Chapter 9 is an
excellent description of the various algorithms used in parallel molecular
dynamics.

For the experienced parallel computational chemist, this book is
packed with valuable information. Chapters discuss the latest trends in
parallel programming tools, such as object-oriented programming
(Chapters 4 and 6), tool command language (tel) (Chapter 7), and the
global arrays (GA) package (Chapter 6). Other chapters include some of
the latest algorithms, such as the parallel fast multipole approximation
(Chapter 11), the force decomposition algorithm (Chapter 9), and the use
of distributed shared memory in post-Hartree-Fock calculations (Chapter
6).

The chapters in this book give a good feel for the range of hardware
used in parallel computational chemistry: from massively parallel single
instruction-multiple data (SIMD) machines (Chapter 13) to cost-effective
workstation clusters (Chapter 5). They also provide a well-rounded view
of what it is like to work with parallel systems—including some of the
frustrations (Chapter 8).

In all, this book is a self-contained introduction to the state of the art
in parallel computational chemistry. I can't claim that every important
method is in here (notable omissions are Monte Carlo and density func
tional methods), but the most common parallel computational chemistry
methods are here.

T I M O T H Y G. M A T T S O N
Intel Corporation
Supercomputer Systems Division
Mail Stop C06-09
14924 Northwest Greenbrier Parkway
Beaverton, OR 97006

November 15, 1994

viii

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
pr

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 1

Parallel Computing

Timothy G. Mattson

Intel Corporation, Supercomputer Systems Division, Mail Stop C06-09,
14924 Northwest Greenbrier Parkway, Beaverton, OR 97006

Computational chemists place tremendous demands on their computers. From the
thousands of atoms in molecular modeling to the hundreds of basis functions in
quantum chemistry, chemists are among the most demanding of all supercomputer
users. It is therefore not surprising that computational chemists consistently find
themselves at the forefront of high performance computing.

Over the last decade, the forefront of high performance computing has come to
mean parallel computing: i.e. the use of many processors in unison to solve a single
problem. These parallel computers not only provide the most computational power,
they are also more cost-effective than traditional vector-based supercomputers. More
cost effective, that is, in terms of hardware. When software costs are factored in, a
different picture emerges.

The software costs for parallel systems are excessive. The reason for this is simple:
parallel programming is hard! On a traditional supercomputer, a compiler can look at
C or Fortran code and find operations to compute on the system's vector units. Thus,
these computers can be used with minimal additional programming. On the other hand,
parallel computers need software that has been decomposed into relatively independent
tasks. This decomposition is heavily dependent on an algorithm's structure and so
complex that it is unlikely compilers will ever be able to do the job automatically.
Therefore, to use parallel computers, one must write parallel programs.

Even though the programming costs are great, computational chemistry applications
have been slowly but surely moving onto parallel architectures. After many years of
difficult programming, chemists can now find parallel software for just about every
class of chemical computation.

To understand these developments and perhaps get involved in bringing even more
applications to parallel computers, it is worthwhile to step back and take a close look at
parallel computing. That is the goal of this chapter. We will explore parallel
architectures, parallel algorithms, and the ways parallel programmers evaluate the
performance of parallel algorithms. Throughout the discussion, careful attention will be
paid to the jargon of parallel computing so the reader can jump directly from this
chapter into the literature of parallel computing.

0097-6156/95/0592-0001$12.00A)
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

What is Parallel Computing?

The term parallel computing refers to computing that uses multiple central processing
units (CPU) to solve a single problem. The hardware that supports parallel computing
goes under a number of names: multicomputer, parallel computer, cluster,
multiprocessor, etc. Each of these names suggests a particular nuance of architecture.
We won't worry about these details, however, and will use the term parallel computer
to mean any system with multiple CPU's. We will refer to the individual processing
units as the nodes of the parallel computer.

There are many different ways to combine CPU's into a parallel computer. To keep
track of these options, computer scientists organize parallel architectures in terms of
instruction streams and data streams (1). Two cases have become everyday terms to
the parallel programmer:

1. Single Instruction, Multiple-Data (SIMD).
2. Multiple-Instruction, Multiple Data (MIMD).

A SIMD computer consists of multiple nodes working in lock-step from a single
instruction stream. While this accurately describes some super-scalar and vector
architectures, parallel programmers reserve the term SIMD for computers containing a
very large number (thousands to tens of thousands) of simple processors with their own
local memory. Since all of the processors are driven by a single instruction stream, the
parallelism is expressed in terms of concurrent operations on distinct data elements.

SIMD computing's single instruction stream makes the programmer's job easier; a
belief that has driven much of the interest in the SIMD architecture. Using a single
instruction stream, however, carries a price. Whenever a SIMD program contains
conditional logic, some nodes execute while others remain idle. For example,
depending on the data, the run-time for an IF-ELSE structure can be equal to the sum
of the run-times for the individual IF and ELSE clauses. Hence, while the SIMD
program may be easy to write, getting the most out of the computer may require
complicated coding to eliminate conditional logic.

The best example of a SIMD computer is the MP-2 computer from MasPar
Computer Corporation. This machine has from 1024 to 16,384 32 bit processors each
with its own memory. Al l of the processors work off a single instruction stream
provided by a single array control unit. The MP-2 is tightly coupled to a front-end
workstation. The programs are written in a data parallel dialect of a sequential language
that has a rich set of array based operations (such as Fortran90) with sequential
operations occurring on the front-end workstation and array operations occurring on
the MP-2. If the programmer is not careful, data sloshing occurs meaning that excess
data movement occurs between the MP-2 and the front-end workstation.

MIMD computers are based on a more general parallel architecture with processing
elements that have their own instruction and data streams. In most cases, a MIMD
computer is built with microprocessor components developed for the PC and
workstation markets. The huge volume of these markets fuels fiercely competitive
R&D efforts that keep these standard components at the leading edge of performance.
These same market forces keep component prices low allowing MIMD computers to
easily hold the price performance lead in supercomputing.

MIMD systems are divided into two categories: shared memory and distributed

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 3

memory. Good examples of shared memory MIMD computers are the systems
marketed by Silicon Graphics Incorporated (SGI). These computers have multiple
processors connected to a shared memory by a high speed bus. This gives the
programmer a single address-space which simplifies programming because data is
where it is needed when it is needed. On the other hand, a single address space
complicates programming since processes can corrupt each other's data. To solve this
problem, programmers place semaphores around critical data elements to enforce a safe
order for memory references.

Shared memory computers are usually limited to peak sizes of 16 to 32 nodes. This
limitation exists because the bus connecting the processors to the shared memory
saturates if too many nodes are added. To build computers with large numbers of nodes
(a so called scalable system), the aggregate access rate to memory must increase as
more nodes are added. Distributed memory computers provide a solution to this
problem.

As the name implies, distributed memory MIMD computers locate the memory with
each processor. They may provide a shared memory programming model (T3D from
Cray Research Inc.), but the underlying architecture uses multiple independent
processors with their own local memory. These processors are connected by a
communication network that supports passing messages between individual nodes
(hence why these sometimes are called message passing architectures). The network
connects the processors in a particular arrangement such as a mesh (Paragon and Delta
Supercomputers from Intel Corporation), the fat tree (CM-5 from Thinking Machines
Corp.) a hypercube (nCUBE 2 from nCUBE Corporation, iPSC/860 from Intel
Corporations) or a hierarchy of crossbar switches (SP1 and SP2 from IBM). This
arrangement of processors is called the computer's topology.

Programmers used to pay a great deal of attention to a parallel computer's topology.
Fortunately, most distributed memory MIMD systems now use sophisticated message
routing mechanisms that let a processor communicate to any other processor on the
same time scale. This is, of course, only an approximation and for performance tuning
the detailed arrangement of processors can still be important. These are low-level
optimizations, however, so most parallel programmers can safely ignore a computer's
topology.

A sub-class of distributed memory MIMD computers is workstation clusters. As the
name implies, these parallel computers are built from a network of workstations. In
many cases, ethernet-connected networks of desktop workstations can be used for
impressive supercomputing off-hours when they are otherwise idle (see chapter 5).
Workstation clusters can also be built specifically for parallel computing. In this case,
sophisticated interconnection hardware based on fiber-optic networks (FDDI) or a high
speed switch such as an A T M switch can be used (see chapter 11). The interest in this
type of parallel computing has grown dramatically in the last five years as software
(2,3) has become available to make these systems as easy to program as traditional
parallel computers.

The research described in this book was carried out on a wide range of parallel
systems. Table I lists these systems along with the chapters where they appear. This
table shows a predominance of systems from Intel Corp. This is due to the popularity
of the distributed memory MIMD architecture and the fact that Intel has been building

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Ta
bl

e
L

Pa
ra

lle
l c

om
pu

te
rs

 d
isc

us
se

d
in

 th
is

 b
oo

k.
 T

he
 v

en
do

rs
 fo

r t
he

se
 sy

st
em

s a
re

 n
am

ed
 i

n
th

e
te

xt
.

C
om

pu
te

r
nC

U
B

E2

T3
D

C

90

C
M

5
M

P2

D
el

ta

iP
SC

/8
60

Pa

ra
go

n
SG

I
C

lu
st

er
s

A
rc

hi
te

ct
ur

e
D

M

D
M

,
SM

,
D

M
,

D
M

,
D

M
,

D
M

,
D

M
,

SM
,

D
M

,
M

IM
D

D

SM
,

M
IM

D

M
IM

D

SI
M

D

M
IM

D

M
IM

D

M
IM

D

M
IM

D

M
IM

D

M
IM

D

C
ha

pt
er

s
9

9
14

14

13

3,

 6
,

12

3,
 6

,
8,

9
3,

4,

8,

9,

11

7
2,

 5
,

10
,

11

D
M

D

is
tri

bu
te

d
M

em
or

y
SM

Sh

ar
ed

 M
em

or
y

D
SM

D

is
tri

ub
te

d
Sh

ar
ed

 M
em

or
y

M
IM

D

M
ul

tip
le

 In
st

ru
ct

io
n,

 M
ul

tip
le

 S
tre

am
 A

rc
hi

te
ct

ur
e

SI
M

D

Si
ng

le
 In

st
ru

ct
io

n,
 M

ul
tip

le
 D

at
a

A
rc

hi
te

ct
ur

e

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 5

this type of computer longer than other vendors (with the possible exception of nCUBE
Corp.). The second most common system in this book is workstation clusters. Clusters
do not provide the ultimate performance, but they are ubiquitous and a good source of
affordable supercomputing.

For many years, a SIMD-vs.-MIMD debate raged within the parallel computing
community. There are still echoes of this debate, but essentially its over and the
MIMD-camp won. This can be seen by the lack of SIMD systems in Table I, but more
importantly by the poor sales of SIMD computers in the marketplace. These systems
were supposed to be easy to program, but it turned out that optimizing SIMD
programs was very difficult At the time this is being written, only one manufacturer
continues to produce general purpose supercomputers based on the SIMD architecture,
making MIMD systems the overwhelming majority. Hence, while the vocabulary and
general concepts discussed in the rest of this chapter apply to both architectures, the
bulk of this discussion is specialized to MIMD computers. To learn more about the use
of SIMD computers, see chapter 13.

How to Program Parallel Computers

Writing software is a complex undertaking regardless of the target system. If that target
computer is parallel, however, it quickly becomes a truly daunting task. This difficulty
has hindered the adoption of parallel computing for mainstream supercomputing.

To help understand parallel programming, lets first take a look at programming in
general. Programmers view a computer in terms of a high level abstraction called a
programming model. This frees them from low-level, system dependent details and lets
them write portable software. For single processor computers, there is a common
programming model that virtually all programmers use: the von Neumann model. The
von Neumann model views a computer as a single processor with a single stream of
instructions that operates on a single memory. Processors and the memory sub-systems
vary widely from one computer to another. These details can be neglected by the
programmer (except for final performance tuning), letting a program coded to the von
Neumann model run on any single processor computer.

Unfortunately, parallel programmers have not converged on a single programming
model. This complicates a programmer's job forcing him or her to choose from a range
of programming models. In addition, the lack of a universal programming model has
diluted the efforts of programming tool developers resulting in relatively immature
tools for parallel computing. The result is that the parallel programmer's difficult job is
made even harder.

Of the many programming models for MIMD computers, most fall into one of two
camps:

1. Task parallelism
2. Data Parallelism

In task parallelism, parallelism is expressed by mapping different actions onto different
nodes. For example, the Strand parallel programming language (4) supports
concurrency by executing different routines on different nodes. Another example of
task parallelism is pipeline algorithms (see chapter 7). These algorithms consist of an
ordered set of tasks (called stages) that execute in parallel. Input data enters the
pipeline at one end, and after working through each of the stages, the final result comes

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

6 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

out the other end. Once the pipeline is full, the algorithm proceeds with concurrency
equal to the number of stages (the depth of the pipeline). In both examples, it is the
tasks to be executed in parallel that guides the algorithm's design.

Algorithms using data parallelism are designed in terms of the data and how it is
distributed among the nodes. At one extreme are pure data parallel, SIMD programs
where every node applies the same stream of instructions to its own data. The data
parallel model is far more general than the SIMD case, however, and includes programs
with very different actions occurring on each node.

The most common data parallel programming model is called SPMD or Single
Program Multiple Data. In this case, the same program is loaded onto each of the
parallel computer's nodes. This simplification helps the programmer tremendously
because only a single program needs to be written. Unlike the SIMD case, however,
different operations execute concurrently from one node to another due to conditional
logic within the program.

Programming models are important - especially to computer scientists trying to find
more humane ways to program parallel computers. Application programmers, however,
are more concerned with the implementation of a programming model; i.e. the
programming environment. Since the data parallel model dominates parallel
computing, programming environments supporting the data parallel model are by far
the most common. These programming environments take a number of forms, but most
share a basic structure. We refer to this basic structure as the coordination model. In
the coordination model, a parallel program is seen as a number of sequential processes
with their own local memories that coordinate their actions at specific points in the
program.

For example, coordination libraries such as P V M (5), TCGMSG (6), or MPI (7)
use the exchange of discrete messages to coordinate processes. The bulk of the
program is traditional C or Fortran with library function calls to exchange messages,
synchronize processes, or to spawn new processes. Because of their focus on message
passing, these systems are frequently called message passing libraries. The term is too
restrictive, however, since these systems do far more than exchange messages.

A more sophisticated approach uses compiler support for coordination through a
coordination language. Coordination languages separate computation (which remains
in the domain of the sequential language) from parallelism (which remains strictly
within the coordination language). There are several advantages to getting the compiler
involved with coordination. The compiler can detect inconsistencies in the coordination
operations making initial debugging much easier. In addition, the coordination
language's high level view of the parallel computer provides additional algorithmic
flexibility. For example, the best known coordination language is Linda (8). In Linda,
coordination takes place through a small set of operations that manipulate objects
within a distinct shared memory (for more information about Linda, see chapters 5 and
10). The shared memory supports algorithms that use high level constructs such as
distributed data structures and anonymous communication (i.e. the sender and/or
receiver don't know the identity of one another). Linda isn't the only coordination
language. Several others are available including Fortran-M (9) and PFortran (10).

While less commonly used, programming environments that do not use the
coordination model are available. These programming environments are based on

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 7

formal models of the parallel computer resulting in inherently parallel programming
languages. For example, there are parallel programming environments that use
concurrent logic programming (Strand (4)), functional programming (SISAL (11)), and
SIMD-style data parallel programming (HPF (12)). Each of these systems are based on
formal models of the parallel computer and have distinct advantages. To use these
environments, however, a programmer must learn a new language. Programmers are
reluctant to learn new languages, so these inherently parallel languages have seen
insignificant usage compared to programming environments based on the coordination
model.

Which programming environment is the best? This question has been addressed for
some systems (13,14), but in the final analysis, a general answer does not exist. Every
programmer must choose for themselves based on the sorts of algorithms that will be
implemented and the parallel systems that the software will run on.

Algorithms for Parallel Computing

The heart of any program is its algorithms. The parallel programmer must deal with
two levels of algorithms. First, each node runs a local program, so all the challenges of
sequential algorithms must be faced. Second, there are a myriad of issues unique to
parallel computing such as balancing the work load among all the nodes and making
sure that data is where it is needed when it is needed. Because of these two levels of
complexity, parallel algorithms are among the most challenging of all algorithms.
Complicating matters further, many different parallel algorithms are available. It is easy
for parallel programmers - both novice and expert - to become overwhelmed.

Fortunately, most parallel algorithms can be more easily understood by mapping
them into one or more of three simple algorithm classes. We will call these algorithm
classes and the code constructs that implement them, algorithmic motifs. The three
most common algorithmic motifs are:

1. Loop Splitting
2. Domain Decomposition
3. Master/worker or the task queue

In addition to the algorithmic motif, the parallel programmer must understand an
algorithm's granularity. Granularity refers to the ratio of the time spent computing to
the time spent communicating (or synchronizing). If an algorithm must communicate
after a small amount of computation, it is called fine grained. If a great deal of
computation occurs for each communication, the algorithm is said to be coarse
grained.

Granularity is also used to describe the number of simultaneous processes within a
program. If an algorithm can use only a small number of simultaneous processes, the
program is called coarse grained: even if it requires a great amount of communication
relative to computation. Usually a program is coarse or fine grained under both
definitions of granularity, but this isn't always the case.

It is important to understand the granularity of an algorithm and make sure it is
consistent with the granularity of the hardware. For example, if the hardware
communication rate is much slower than the computation rate (such as an ethernet
connected workstation cluster), then fine grained algorithms will not run well. Of
course, communication capacity can be under utilized so coarse grained algorithms
work well on fine grained parallel computers.

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

Notice that it is the granularity, not the amount of communication, that governs the
effectiveness of an algorithm on a particular parallel computer. For example, some
parallel programmers assume that a collection of workstations on a local area network
can not be used with algorithms that require significant communication. This isn't true!
If computation grows faster than communication as a problem's size increases, then it is
possible to increase a problem's size so its granularity matches the coarse granularity of
a workstation cluster. Such large problem sizes may not be interesting, but when they
are, it is possible to do supercomputing on a workstation cluster - even if substantial
communication is required. Hence, it isn't the amount of communication but the ratio of
computation to communication (granularity) that matters.

We will now look at each of these algorithmic motifs in detail. For each case, we
will describe what the motif is, when it can be used, and finally, how it is used to code a
parallel program.

Loop Splitting. The parallelism in a loop splitting algorithm comes from assigning
loop iterations to different processors. It is almost always used within a replicated data
SPMD program. This means that the same program is loaded onto each node of the
parallel computer and that key data structures are replicated on each node. At the
conclusion of the split loops, a single copy of this data is rebuilt on each node. It is this
reconstruction that represents the communication phase of the parallel algorithm. Data
replication is a powerful technique and is a simple way to assure that the right data is
located where it is needed when it is needed.

The loop splitting algorithm can be used whenever:
1. The bulk of a program's run time is spent in a few loops.
2. The iterations of the split loops are independent and can

execute in any order.
3. The replicated data fits in each node's memory.
4. The amount of data that must be replicated is small enough so

communication doesn't overwhelm computation.
A simple example will clarify the loop splitting algorithmic motif and show how it is
used. Consider the following code fragment:

do i = 0, NUMBER_OF_ITERATIONS
call WORK()

end do
If the operations carried out within WORK() are independent of any previous loop
iterations (i.e. there are no loop carried dependencies) this code can be parallelized with
loop splitting. First, the same program is loaded onto each node of the parallel
computer (the SPMD program structure). Next, logic is added to replicate any key data
structures manipulated in this loop. The loop iterations are then spread out among the
nodes in some manner. A common trick is to use a cyclic distribution of the loop
iterations:

do I = ID, NUMBER_OF_ITERATIONS, N U M . N O D E S
call WORK()

end do
call GLOBAL_COMBINE()

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 9

where we assume that each of the NUM_NODES processors has a unique node ID
ranging from 0 to NUM_NODES-L The cyclic distribution assigns loop iterations as if
a deck of cards were being dealt to the nodes with each node getting iterations ID,
ED+NUM_NODES, ID+2*NUM_NODES, etc. As the calculation proceeds on each
node, it fills in a scattered subset of any replicated data structures. When the loop is
finished on each node, this scattered data is recombined into a globally consistent data
structure with a call to a GLOB AL_COMBINE() operation. This operation uses all-to-
all communication, i.e. each node contributes its subset of the data to each of the other
nodes. Since all nodes must participate, GLOBAL_COMBINE() operations implicitly
invoke a synchronization barrier - i.e. a point in a parallel program where each node
waits until all nodes have arrived.

Al l of the communication in the loop splitting algorithm occurs in the
GLOBAL_COMBINE operation. Of the many GLOBAL_COMBINE() operations, the
most common is the global summation. The starting point for a global summation is
distinct (though same sized) vectors on each node. The corresponding elements of the
vector are summed together leading to a single vector containing the summed elements.
The operation concludes by replicating the vector on each of the nodes of the parallel
computer using a broadcast or in the most clever algorithms, the vectors are
manipulated so the same reduced vector is produced in parallel on each of the nodes
(15,18). While it is easy to describe a global combine operation, writing one that works
efficiently and correctly is difficult Fortunately, these operations are included in most
parallel programming environments. For more information about global summations
including code for a primitive method, see chapter 10.

The cyclic distribution is not the only way to assign loop iterations. On some
architectures, reuse of data from the cache is maximized by having a blocked
distribution with contiguous blocks of loop indices assigned to each node. One way to
code this is to use arrays indexed by the node ID to indicate the first and last loop
indices for each node. For example:

do I = FIRST(ID), LAST(ID)
call WORK()

end do
call GLOBAL_COMBINE()

The disadvantage of the blocked distribution is its potential to produce uneven amounts
of computing among the nodes. If different iterations take different amounts of time,
then processors can run out of work at different times. The cyclic distribution avoids
this problem in a statistical manner due to the scattering of the loop iterations among
the nodes. A program that uses a blocked distribution, however, may need to
periodically recompute the FIRST and LAST arrays to keep all of the processors
evenly loaded (dynamic load balancing).

Any algorithm that depends on a replicated data approach suffers from
communication that scales poorly and excess memory utilization. This limits the
scalability of an algorithm (i.e. the number of nodes that can be effectively used in the
computation). These are serious weaknesses for a parallel algorithm, yet loop spHtting
is by far the most common parallel algorithmic motif used by computational chemists.
Why is this the case?

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

Loop splitting is so common for one reason: simplicity. Given a complex program
that has evolved over many years (and many programmers) the loop splitting algorithm
lets one create a parallel program with minimum changes to the original code. It also
lets one parallelize a program without understanding how its data structures are
manipulated. Eventually, as programs are written from scratch for parallel computers,
loop splitting algorithms will be used less often. But for the immediate future,
sequential programs must be ported to parallel platforms, and the loop splitting
algorithms will continue to dominate. For examples of the loop splitting motif, see
chapters 2, 8, 9, and 10 as well as the classic paper on the parallelization of C H A R M M
(18).

Domain Decomposition. The central organizing principle of a domain decomposition
(or geometric decomposition) algorithm is the way data is broken down into smaller
units (the data decomposition). Once this decomposition is carried out, a program
operates locally on its chunk of the data. Communication occurs at the boundaries of
the local domains and is usually restricted to neighboring processors. This is the
inherent advantage of these methods. By eliminating global communication, domain
decomposition methods can use more nodes. Furthermore, these algorithms use
memory more efficiently since they only need space for a local domain - not an entire
copy of the global data.

The loops in domain decomposition programs run over local indices so these
programs can look like block decomposition, loop splitting programs. They are quite
different, however, since the domain decomposition programs must decompose the
data into local blocks and communicate to selected nodes rather than globally.

Domain decomposition algorithms can be used whenever computations are localized
over well defined blocks of data. Another factor to look for when choosing a domain
decomposition algorithm is that the communication required to update a local data
block is restricted to a small number of nearby processors.

Good examples of the domain decomposition algorithm are spatial decomposition
algorithms for molecular dynamics (see chapter 9). For these algorithms, 3D space is
divided into distinct regions which are mapped onto the nodes of the parallel computer.
Each node updates the forces and coordinates for atoms in its region. Communication
arises from two sources. First, to compute the forces for atoms near the domain's edge,
atomic data is required from the neighboring domains. Second, atoms must be sent to
neighboring processors when they move across a domain boundary.

Domain decomposition algorithms are significantly more complicated than loop
splitting algorithms. They are usually superior algorithms in terms of effective
utilization of the parallel computer, so they should be used whenever the extra effort is
justified (e.g. library routines such as parallel eigensolvers) or when a program is
written from scratch for a parallel computer.

An important trend in domain decomposition algorithms is to simplify the data
decomposition through distributed shared memory. This usually is implemented as a
software package that provides a restricted form of shared memory regardless of the
underlying hardware's memory organization. An important example of this type of
programming can be found in chapter 6 where the GA package running on top of
TCGMSG is described.

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 11

Master-worker. Master-worker (or task queue) algorithms distribute independent
tasks among the nodes of a parallel computer. While the other two motifs are
expressions of a data parallel programming model, master worker algorithms are
examples of task parallelism.

Master-worker algorithms are useful when a program consists of a large number of
completely independent tasks. These sorts of problems are officially designated as
embarrassingly parallel (16) since the parallelism is so simple to extract. For reasons
that will become clear in the following paragraphs, there are such striking advantages
to the master-worker algorithmic motif, it should be used whenever possible.

Logically, a master-worker program consists of two types of processes - a master
and a worker. The master process manages the computation by:

1. Setting up the computation.
2. Creating and managing a collection of tasks (the task queue).
3. Consuming results.

The worker process contains some type of infinite loop within which it:
1. Grabs a task and tests for termination.
2. Carries out the indicated computation.
3. Returns the result to the master.

Termination is indicated in a number of ways. One approach is for the master or
some worker to detect the last task and then create a poison pill. The poison pill is a
special task that tells all the other workers to terminate. Another approach is for each
task to be sequentially numbered and for each worker to check when that number of
tasks has been met (or exceeded).

There are many variations of the basic master-worker motif. If consuming results is
trivial or easily delayed to the end of the computation, it is quite simple to modify the
master to turn into a worker after it sets up the task queue. In another variation, the
generation of tasks can be spread among the workers. Finally, when the master is not
required to do anything special with either the creation of tasks or consumption of
results, it is possible to completely eliminate the master and replace it by a mechanism
to manage a queue of tasks. For example, in the programming environment TCGMSG
(6) a special process is provided that maintains a globally shared counter. One can then
create an SPMD program which uses the global counter to maintain the task queue. An
example of this technique can be found in chapters 2 and 6.

There are a number of advantages associated with master-worker algorithms. First,
they are very easy to code. A worker can be simply created from an original sequential
program by just adding logic to interact with the task queue. Ease of programming is
an important advantage. Even without this advantage, there is a compelling reason to
use this algorithmic motif when it is possible to do so. A master-worker program can
be constructed such that it automatically balances the load among the nodes of the
parallel computer.

Lets consider a worse case scenario. Consider a parallel computer for which each
node has a different speed of computation. Furthermore, let the computational
requirements of each task vary significantly and unpredictably. In this case, any static
distribution of tasks is guaranteed to produce a poor load balance. A master-worker
algorithm, deals quite easily with this situation. The workers grab tasks and compute

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

them at their own pace. A faster node will naturally grab more tasks and therefore
balance the load. Furthermore, nodes that happen to grab more complex tasks will take
more time and access the task-queue less frequently. Once again, the number of tasks is
naturally reduced for these more heavily loaded nodes.

Algorithms with these characteristics automatically provide dynamic load
balancing. There are a couple conditions that must be met by the task queue in order
for this motif to be most effective. First, the number of tasks must be greater than the
number of nodes — preferably much greater. This holds because the amount of
available parallelism is given by the number of tasks. Hence, once the tasks are all
assigned, no further parallelism is available to the system.

The second condition for a fully optimum master-worker algorithm is for the longest
tasks to be handled first. If the long tasks are not handled until late in the computation,
a single process can be stuck working on a long task while no other tasks remain for
the other nodes. By handling the long tasks first, the odds are greatest that work will be
available for the other nodes during computation on the long tasks.

Master-worker algorithms are not without their shortcomings. As mentioned
earlier, they really only map cleanly onto embarrassingly parallel problems. More
fundamentally, the master-worker algorithm ignores the underlying system topology.
While it is good to de-emphasize topology when first writing a parallel program, it can
be vital to include topology during final code optimization. In some cases significant
performance benefits can result by controlling which tasks are mapped onto which
nodes - a level of control that master-worker algorithms do not easily permit.

Even with these shortcoming, however, the master-worker algorithm is extremely
useful. Computational chemists are quite fortunate that many important algorithms can
be mapped onto the master worker algorithmic motif. Most problems involving
stochastic optimization (e.g. DGEOM (17)) can be mapped onto this algorithmic motif.

How is Performance Measured?

Parallel computers are used to achieve greater performance, so any discussion of
parallel computing eventually must address the performance of the system.

There are several standard measures of a parallel algorithm's performance. Before
describing these, consider the characteristics of a parallel application that lead to high
performance. To most effectively extract performance from a parallel computer, the
computational work (or load) must be evenly distributed about the nodes of the parallel
computer. We use the term load balance to describe this situation. Algorithms with
poor load balancing result in computations where some nodes are busy while others
remain idle. Static load balancing is used when the load is computed once and remains
fixed as the calculation proceeds. Dynamic load balancing occurs when the load is
changed in the course of the calculation to keep all nodes equally occupied.

Even when the load is perfectly balanced, the performance of a parallel program will
be poor if too much time is spent communicating rather than doing useful computation.
This is an important effect that plays a key role in limiting how many nodes can be
used. To see this point, consider the distribution of a fixed amount of work among the
nodes of a parallel computer. As more nodes are used, less work is available for each
node. As more nodes are added, however, communication usually remains either fixed

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 13

or in some cases increases. Eventually, more time is spent communicating than
computing and the performance suffers.

With these effects in mind, we can look at how performance of a parallel computer
is measured. The most fundamental measurement is speedup. Speedup is the multiplier
indicating how many times faster the parallel program is than the sequential program.
For example, if the program took T Seq seconds on one node and T(N) seconds on Ν
nodes, the speedup is the ratio:

S " T (N)
When the speedup equals the number of nodes in the parallel computer, the speedup is
said to be perfectly linear.

From the speedup, we can derive an important relationship describing the maximum
performance available from a parallel algorithm. This relation is called Amdahl's law.
Amdahl's law holds because parallel algorithms almost always include work that can
only take place sequentially. From this sequential fraction, Amdahl's law provides a
maximum possible speedup. For example, consider the parallelization of a sequential
program. If we define the following variables:

Tseq = time for the sequential program
α = fraction of Tseq dedicated to inherently sequential operations
γ = fraction of Tseq dedicated to parallel operations
Smax = maximum possible speedup
Ρ = Number of nodes

the best possible speedup for any number of processors is:
s =

 T seq = 1
TseqY 1 - α

c c T S e q + — a + - p -

In the limit of infinite number of processors, this expression becomes:

kmax- α

This is a serious constraint and was used for years to argue against parallel processing.
If the sequential fraction is 10%, the best possible speedup is 10. Even a rather extreme
case of a 99% parallel program gives a best possible speedup of only 100.

Amdahl's law is real and must always be considered when trying to evaluate the
quality of a parallel program. However, this pessimistic view misses one key point. As
the number of available processors grows, the size of the problem can grow as well. In
other words, parallel computers provide speed, but they also provide the memory
capacity to support larger problems.

Another way to describe the performance of a parallel program is the efficiency.
Qualitatively, efficiency measures how effectively the resources of the multiprocessor
system are utilized. Quantitative definitions of efficiency generally take the form:

Ρ tpar
where Ρ is the number of nodes, tref is some sequential reference time, and tpar the
parallel time. The most rigorous definition of efficiency sets tref to the execution time
for the best sequential algorithm corresponding to the parallel algorithm under study.
When analyzing parallel programs, "best" sequential algorithms are not always

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

14 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

available, and it is common to use the runtime for the parallel program on a single node
as the reference time. This can inflate the efficiency since managing the parallel
computation always (even when executing on one node) incurs some overhead.

Conclusion

Parallel programming is a complex art. The parallel programmer must deal with all of
the problems of sequential programming, as well as a host of new problems unique to
parallel computing. These uniquely parallel problems are complex and can be very
difficult to master.

Parallel computing, however, is no different than many subjects and follows an "80-
20 rule". In other words, 80% of the understanding comes from 20% of the knowledge.
The problem is to find that key 20%; a problem this chapter has tackled and hopefully
solved.

We close this chapter by emphasizing four key simplifications for the person just
entering the field of parallel computing. First, view parallel computers in terms of a
spectrum of MIMD systems distinguished by the granularity of the hardware. This does
omit some architectures such as SIMD computers, but these systems are becoming
increasingly rare. A MIMD spectrum outlook helps one write more effective code by
putting architecture dependent details such as topology in their place; i.e. as a final
optimization and not as the key focus of a programming effort

Second, one should pick a portable programming environment they are comfortable
with and stick with it. This environment should be selected based on ease of use and
effectiveness for the algorithms you are interested in. Performance differences are
usually not significant among the common programming environments (14).

Third, when faced with a new parallel algorithm, try and map it into some
combination of the algorithmic motifs described in this chapter:

1. Loop Splitting.
2. Master Worker (Task Queue).
3. Domain Decomposition.

It is not always possible to clearly map an algorithm into one of these motifs (for
example, see chapters 4 and 6), but the motifs can help organize your reasoning about
the algorithm.

Finally, when thinking about a parallel program, evaluate your observed
performance in terms of Amdahl's law. If the load balancing is right and the problem
size is large enough, your program should follow the speedup curves given by Amdahl's
law. If your performance is than that predicted by Amdahl law, the load balancing is
wrong or the program's sequential fraction changes unfavorably as more nodes are
included in the computation.

Even with these four simplifications, parallel computing can be overwhelming. It is
worth the effort, though, since chemistry stands to gain so much from parallel
computing.

Numerous trademarfa appear in this chapter. In each case, these trademarks are
the property of their owners.

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

1. M A T T S O N Parallel Computing 15

References

1. M.J. Flynn, "Some Computer Organizations and Their Effectiveness," IEEE
Trans, computers, vol C-21, No. 9, 1972.

2. L. Turcotte, "A Survey of Software Environments for Exploiting Networked
Computing Resources," Tech Report # MSM-EIRS-ERC-93-2, Mississippi State
University, 1993.

3. D. Y. Cheng, "A Survey of Parallel Programming languages and Tools," NASA
Ames Research Center Technical Report RND-93-005, 1993.

4. I. Foster and S. Taylor, Strand: New Concepts in Parallel Programming,
Prentice Hall, 1990.

5. V. Sunderam, "PVM: a Framework for Parallel Distributed Computing,"
Concurrency: Practice and Experience, vol 2, pp. 315-339, 1990.

6. R. J. Harrison, "Portable Tools and Applications for Parallel Computers," Int. J.
Quantum Chem, vol 40, pp. 847-863, 1991.

8. N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course,
MIT press, 1991.

7. D.W. Walker, "The Design of a Standard Message Passing Interface for
Distributed Memory Concurrent Computers," Parallel Computing, vol 20, p.
657, 1994.

9. I. Foster, R. Olson, and S. Tuecke, "Programming in Fortran M," Technical
Report ANL-93/26. Argonne National laboratory, 1993.

10. B. Bagheri, T.W. Clark and L.R. Scott, "PFortran (a parallel extension of
Fortran) reference manual." Research Report UH/MD-119, Dept. of
Mathematics, University of Houston, 1991.

11. J.T. Feo, D.C. Camm, and R.R. Oldehoeft, "A Report on the SISAL Language
Project," Journal of Parallel and Distributed Computing, vol 12, p. 349, 1990.

12. The HPF Forum, "High Performance Fortran, Journal of Development," Special
issue of Scientific Programming , vol. 2, No. 1,2, 1993.

13. T.W. Clark, R.v. Hanxleden, K. Kennedy, C. Koelbel, and L.R. Scott,
"Evaluating Parallel Languages for Molecular Dynamics Computations,"
Proceedings of the Scalable High Performance Computing Conference,
(SHPCC-92),p98, 1992

14. T. G. Mattson, "Programming Environments for Parallel and Distributed
Computing: A Comparison of p4, PVM, Linda, and TCGMSG," International
Journal of Supercomputing Applications, to appear in 1995..

15. R. A. van de Geijn, "Efficient Global Combine Operations," Proceedings Sixth
Distributed Memory Computing Conference, p. 291, IEEE Computer Society
Press, 1991.

16. G. C. Fox, "Parallel Computing comes of Age: Supercomputer Level Parallel
Computations at Caltech," Concurrency: Practice and Experience, vol. 1, No. 1,
p. 63, 1989.

17. T.G. Mattson and R. Judsen, "pDGEOM: a Parallel Distance Geometry
Program," Portland State University, C.S. Tech Report, 1994.

18. R. R. Brooks and M. Hodoscek, "Parallelization of CHARMM for MIMD
Machines," Chemical Design Automation News, vol 7, p. 16, 1992.

RECEIVED December 28, 1994

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 2

Parallel Implementation of the Electronic
Structure Code GAMESS

Theresa L. Windus1, Michael W. Schmidt2, and Mark S. Gordon2

1Department of Chemistry, Northwestern University,
Evanston, IL 60208-3113

2Department of Chemistry, Iowa State University, Ames, IA 50101

This paper outlines various tools and techniques for the parallelization
of quantum chemistry codes; in particular, for the electronic structure
code GAMESS. A general overview of the parallel capabilities of
GAMESS are also presented.

The parallelization of quantum chemistry codes has become a very
active area of research over the last decade(1,2,3,4). Until recently, most
of this research has dealt with self-consistent field (SCF) theory(1).
However, in the last few years parallel implementations of post-SCF
methods have been presented (2). Most of the post-SCF methods and
analytic Hessians for SCF wavefunctions face the substantial problem
of parallelizing the atomic orbital (AO) integral to molecular orbital
(MO) integral transformation (3).

The objective of this paper is to provide general information
about the parallel implementation of GAMESS. The following sections
are presented in this paper: (A) a brief overview of the functionality of
the ab initio code GAMESS (General Atomic and Molecular Electronic
Structure System); (B) a short discussion of the model, software, and
general ideas used to parallelize GAMESS; (C) specificss concerning the
parallelization of the SCF; (D) discussion concerning the AO to MO
integral transformation; (E) the transformation as applied to multi-
configuration SCF (MCSCF); (F) the transformation as applied to
analytic Hessians; (G) a brief overview of the parallel MP2 code; and
(H) conclusions and future areas of research will be discussed.

A. Brief overview of GAMESS

GAMESS is a general electronic structure code for the determination of energies,
stationary states, frequencies and various other atomic and molecular properties(ia).
The wavefunctions that are available in GAMESS are given in Table I, together with
information about the availability of analytic determination of gradients, hessians

0097-6156/95/0592-̂)016$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T A L . Parallel Implementation of GAMESS 17

(energy second derivatives with respect to the nuclear coordinates), second order
Moller-Plesset theory (MP2)(5), and configuration interaction (CI)(<5).

Where analytical gradients are available, GAMESS can be used to calculate
stationary points (structural minima and maxima), intrinsic reaction coordinates (IRCs)
between transition states and minima, and numerical Hessians. Complete details of
GAMESS can be found in reference la.

Table I: Tabulated overview of GAMESS

Energy Gradient(a) Hessian(a) ΜΡ2 CI Semi(b)

RHF(c) χ χ χ χ χ χ
UHF(d) χ χ χ χ
ROHF(e) χ χ χ χ χ χ
GVB(f) χ χ χ χ
MCSCF(g) χ χ χ

a. Refers to analytic evaluation. Numerical Hessians are available whenever analytic
gradients are available.
b. Semi-empirical wavefunctions: A M I , MNDO, PM3(7). Energies and analytic
gradients are available.
c. Restricted Hartree-Fock, ref (8).
d. Unrestricted Hartree-Fock, ref (9).
e. Restricted open-shell Hartree-Fock, ref (10).
f. Generalized valence bond, ref (77).
g. Multi-configuration SCF, ref (72).

B. Model, communication software, and general ideas

The single-program, multi-data (SPMD) model is used in the parallelization of
GAMESS with each node executing essentially the same code. This model has many
advantages for a large FORTRAN program (over 120,000 lines of code). One is that
only one code needs to be maintained. Another advantage is that it is relatively easy to
parallelize new sections of the code, since only one code needs to be examined for
parallel content. In the early stages of the parallelization of GAMESS, only certain
portions of the code were allowed to run in parallel. An error message would be given
to a user who tried to run parallel jobs on sections of the code that were not parallelized
and then the job would abort. As furthur portions of the code were parallelized, the error
messages were removed.

An important consideration when parallelizing any code is which communication
software package to use. Several criteria had to be met for GAMESS. First, portable
software was needed since GAMESS executes on many different platforms. Second,
software that required only a small learning curve was needed in order to facilitate the
process, since the objective is to parallelize quantum chemistry codes, not necessarily
to become experts in parallel communication. Third, the communication software had

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

18 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

to work with quantum chemistry codes (i.e. usable with FORTRAN). Finally, the
software must be either free or very cheap so that any user could obtain it. Several
software packages were available at the beginning of our research, but the one that fit
the above criteria best was the TCGMSG package of Harrison (75). This code is
portable across several different platforms including UNIX workstations connected by
Ethernet, distributed memory machines such as the Intel Paragon and shared memory
machines such as the Alliant. Further, only about a dozen functions and subroutines are
needed to perform the majority of the communications. Global functions are available
to perform many of the operations, such as global summations of vectors and
broadcasting a message from one node to all nodes. TCGMSG was specifically written
to work with chemistry codes. And finally, TCGMSG is available via anonymous ftp,
and therefore it is available to essentially all interested users.

Once the communication software and the model of parallelization are chosen, the
"real" parallelization work can begin. First, the program should be relatively up to date
before it is parallelized. It is not, in general, practical or useful to parallelize obsolete
or very slow code. Also, direct methods tend to be easier to parallelize (at least at the
first implementation level) than disk based methods since parallel disk I/O generally
takes extra work to set up. Because of this, a direct method was introduced into the SCF
code before the parallelization was initiated. Before development of the parallel
MCSCF code, a faster transformation with direct capabilities (14b) was implemented.

One general consideration for any parallel code, is how I/O will be done. In
GAMESS, only one node, the "master" node, reads input from the input deck and sends
results to the output file. This requires that the master node "broadcast" input
information to the other nodes. So, as an initial step in the parallelization of GAMESS,
general I/O (as opposed to integral files, etc.) was made to execute only on the master
for the entire code. This step actually consumed quite a bit of time, but in the end it
proved to be very useful to have all of this work done at one time instead of working on
it in small portions.

At this point, it is important to understand how the serial code actually works and
what the computational bottlenecks are. Others(7) have identified the computational
bottlenecks for SCF energies and gradients to be the computation of the two-electron
integrals and two-electron gradient integrals, respectively. These investigators have
developed methods for the parallelization of these parts of the code. In the end, of
course, one wants as much of the code to run in parallel as possible (i.e., consider
Amdahl's Law), but it is useful to attack the computational bottlenecks first. As part of
the understanding of the serial code, it was useful to outline the actual subroutine calls
made in GAMESS. By systematically examining the code, it was relatively easy to see
which parts of the code could be parallelized. For example, even though it is not a
computational bottleneck, the one- electron integrals can be parallelized in a manner
similar to the two-electron integrals in very little programmer time. The actual
parallelization of the SCF code is briefly outlined later in this paper.

During the parallelization process, it became apparent that at least two different
methods of load balancing would be needed to obtain "good" efficiencies across many
different platforms. The two methods used throughout GAMESS are called LOOP and
N X T V A L load balancing. LOOP balancing is a static method that distributes the work
by allowing each node to compute every mth block of work and skip the rest, resulting
in an even distribution of many small pieces of work. This type of load balancing works

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T A L . Parallel Implementation of GAMESS 19

best when the processors are of the same speed and have the same work load. The other
type of load balancing, N X T V A L , is a dynamic algorithm using a shared counter which
is managed by TCGMSG. This algorithm has each node send a message to the counter
to get a new piece of work when it has finished its current work. The pieces of work
must be of a relatively large size to overcome the cost of communicating with the shared
counter. This algorithm works best when the processors are not of the same speed or
do not have the sam work load.

During the parallelization process, several concepts were useful. One of these is
the idea of global broadcast. For a global broadcast, one node has information that the
rest of the nodes needs. This is the concept used when the "master" node sends input
information to the other nodes. However, it can also be useful i f one node performs a
part of the calculation that the others do not and needs to broadcast the information to
the other nodes. So, i f one part of the calculation is found to operate more efficiently
on one node than on several nodes (perhaps because the amount of communication
would be greater than the amount of computation), one node can perform the calculation
and broadcast the results to the other nodes. By using global communications in the
code, the implementor does not need to worry about point to point communication,
because the function supplied by the communication software (TCGMSG in this case)
handles that for each type of hardware. Point to point communication may be needed
in some cases, but in GAMESS, only global broadcasts are used.

Another important concept is the use of global summations. For example, in the
current implementation of parallel SCF, each node calculates a partial contribution to
the Fock matrix and then a global summation is performed. After the global summation,
each node has the complete Fock matrix. An important point to remember is that each
node must zero out the Fock matrix before it calculates its contribution, because the
entire Fock matrix is summed. In other words, the global summation routine essentially
gets the entire Fock matrix from each node, sums the pieces of the Fock matrix, and
sends the result to each node. Related to the initial zeroing of matrices, occasionally
vectors should be scaled before they are summed together. An example of this is in the
gradient code. The one-electron gradient is calculated in parallel, globally summed, and
written out to disk. The last step is performed for restart capabilities. When the two-
electron gradient contribution is calculated, first the one-electron gradient is read from
disk and the two-electron contributions are added. Since the one-electron gradient is
completely self-contained, it must be divided by the number of processors so that the
final result after the global summation of the two-electron gradient terms (which are
calculated in parallel) is correct. Again, global summations are used wherever possible,
instead of point to point communication, under the assumption that the global
summations will be optimized by the communication software. (As will be seen in the
MCSCF section, sparse vectors and matrices should NOT be globally summed to avoid
wasting bandwidth.)

Another useful concept comes into play when debugging parallel code. While
parallel debuggers are available, they are generally hard to use and can give misleading
information. Debugging parallel code can be quite difficult, because the condition that
results in an error is not always reproducable. However, when an error occurs
frequently, a more systematic search for the error can be undertaken. We have found
that flushing output for all the nodes and then aborting the job is a useful way to
determine where the job is going wrong. This must be done at several places in the

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

20 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

code. A place where everything is performing correctly needs to be identified (this is
not necessarily as easy as it sounds). Then, a location where the error has already
occured must be found. Then, it is a matter of printing out information from all of the
nodes in between the two points and moving the abort as far down into the code as
possible before detecting the error. The abort is very important, since it stops all activity
of all of the nodes and can help to determine which nodes are failing where.

Another important tool used in the parallelization of GAMESS was stub routines.
When the code is run sequentially, these stub routines are linked to the code instead of
T C G M S G producing a serial version. However, there are some machines that
T C G M S G has not yet been ported to or that have native functions identical to or
comparable to the TCGMSG calls. Instead of porting TCGMSG to this machine, the
appropriate calls were put into the stub routines, which then function as a translator
betweeen TCGMSG and the native system calls. This isolates the machine spécifie code
into only one source module that needs to be modified for a machine for which
TCGMSG is unavailable or less efficient.

Finally, it should be noted that the approach described in the following paragraphs
has advantages and disadvantages. It is likely that the SCF part of the code can be made
to scale very well for large numbers of processors, as long as the size of the problem is
scaled accordingly. At present the scalability of the analytic hessian and MCSCF codes
is probably more limited, but even here there is a great benefit to users who have several
workstations on which to run the parallel code. In addition, there are clear paths to
improving the scalability of at least the analytic hessian code, and this is in progress.
Since we have chosen to replicate the entire code on all nodes, each node must have
sufficient memory to hold the larger executable.

C. SCF Parallelization

The specific details of the SCF code are given in reference la. However, a general
overview will be given here. The implementation of parallel SCF in GAMESS assumes
that the Fock matrix and the density matrix are replicated on each of the nodes, instead
of being distributed across the nodes. This limits the number of basis functions to
around 400 on machines (such as the Intel Delta) with only 16 M B of memory per node
and no virtual memory capabilities. This may seem to be a drastic limitation, but in
practice, other issues become very important as the size of the problem increases. For
example, for a modest basis set, such as 6-3 lG(d) (15), computations on relatively large
molecules can be undertaken. One such example is the large cyclic adenosine
monophsophate (cAMP) molecule with the molecular formula C 1 0 O 6 N 5 P H n " . For a 6-
31G(d) basis set, this molecule has 389 basis functions. For such a large molecule,
finding the lowest energy conformation becomes a major challenge, not just because of
the required computation time, but also due to the large number of conformations
possible. So, even though a gradient may only take about 2 hours on 128 nodes of the
Intel Delta, the intrinsic optimization problem will make finding the lowest energy
conformer (or conformers) a daunting task. Nonetheless, it is important to explore the
alternative of distributing the Fock matrix across the nodes as a means of increasing the
size of the problems that can be tackled (1).

The following sections of the SCF code were modified to run in parallel: one-
electron integrals, one-electron effective core potential (ECP) integrals, two-electron

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T A L Parallel Implementation of GAMESS 21

integrals, matrix multiplications, matrix diagonalization, one-electron gradient integrals,
one-electron ECP gradient integrals and two-electron gradient integrals. The matrix
diagonalization is actually only partially parallelized. When molecular symmetry is
available in the molecule of interest, the Fock matrix is block diagonal. Each of these
blocks can be sent to individual nodes to be diagonalized and then a global summation
performed to get the total result on all nodes. When no molecular symmetry is available
(i.e. C] symmetry), the diagonalization is completely serial and executes on only one
node. The diagonalization step of an SCF calculation (order N 3 , where Ν is the number
of basis functions) actually becomes the bottleneck for a large enough problem, once the
two-electron integrals (approximately of order N 4) have been parallelized (11). This
means that the matrix diagonalization code needs to be a focus for new parallel
developments. One approach for dealing with this bottleneck is to use a second-order
method(76), but that has not yet been implemented into GAMESS. Details about the
parallelization of the other steps in the SCF will not be given here since they have been
given in many other studies and well accepted techniques were used.

Since the gradients are parallelized, optimizations, transition state searches, IRCs and
numerical Hessians can also be executed in parallel. This provides the robustness of the
parallel SCF part of the program. Many projects have already used the parallel SCF
option of GAMESS to perform computations. Summaries of some of this work may be
found in reference 17.

D. Integral Transformation

One of the biggest challenges to the parallelization of post SCF and analytic Hessian
codes is the A O to MO integral transformation(3). Formally, the transformation from
A O (<μν|λσ>) to M O (<ij|kl>) is an order N 5 operation

<ij|kl> = Σ μ ^ μ Σ ν ς ν Σ ^ , λ Σ ^ , <μν|λσ>

For all of the current applications in GAMESS, only a subset of the molecular integrals
are needed. These are the <ij|kl>, <aj|kl>, <ab|kl>, <aj|kb>, and <aj|bl> integrals, where
i , j , k, 1 are MOs in the occupied space (core and active space for MCSCF, as discussed
below), and a, b are MOs in the unoccupied (virtual) space. Since the transformation
that was previously in GAMESS performed a full transformation, a new transformation
(14) was incorporated into GAMESS. This transformation can use an unsorted list of
A O integrals and molecular symmetry (Abelian groups ov\y(14b)). The A O integrals
can either be taken from disk or calculated directly. One of the options in this
transformation performs passes over the full list of A O integrals to obtain subsets of the
M O integrals. This algorithm is a perfect target for parallelization. Each node performs
one or more passes over the AO integrals and obtains a subset of the M O integrals. In
this way, the M O integrals are spread across all of the nodes and no communication is
needed (unless N X T V A L load balancing is used). While this has the advantages of no
communication and distributed MO integral storage, the algorithm also has the
disadvantage that each node must either have the complete list of A O integrals available
to it on disk or calculate the AO integrals each time they are needed. On a high

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

22 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

communication speed parallel system, it should be possible to store only a subset of the
A O integrals on each node, which can be broadcast to all nodes, so that each processes
the entire AO list. We plan to implement this soon, since it will dramatically cut the A O
integral storage requirement. Another potential disadvantage is that the number of
passes must be evenly divisible by the number of processors (for LOOP load balancing);
otherwise load imbalance can occur. However, the number of passes can be somewhat
controlled by the amount of memory used for the transformation. So, in general, it is
possible to ensure even load distribution. This transformation has now been interfaced
to the MCSCF code, the CI code, the analytic Hessian code and the orbital localization
code(7&/). Parallelization of the CI code is explained below as part of the MCSCF
implementation (2a).

New algorithms for the parallelization of transformations may well be designed
in the future. However, new algorithms will still have the M O integrals distributed
across the nodes. So, it would only be necessary to modify the interface code for the
front end of a new transformation for it to work with the rest of GAMESS. At present,
however, the algorithm described above works fairly well. This is especially true for
the MCSCF calculation where the A O integrals (for a disk based method) are only
calculated once for each MCSCF energy (which may involve approximately 10-20
iterations to obtain convergence). For more information about the transformation, the
reader is referred to reference 2a.

E. Approach to MCSCF

The parallelization of the MCSCF is presented in detail in reference 2a, so only a brief
overview will be given here. This reference also discusses the steps for the parallel CI
code, an important part of the MCSCF code. First, some terms and issues must be
discussed. Before an MCSCF wavefunction can be calculated (variously referred to as
the full optimized reaction space (FORS) (19) or complete active space SCF (CASSCF)
(20) formalism), the molecular orbitals must be partitioned into three different spaces.
First, core orbitals with a fixed occupancy of two electrons must be identified. These
orbitals generally do not contribute to the overall chemical reaction (i.e. they are not
bond breaking or bond making orbitals). Next, an "active space" containing orbitals that
are only partially occupied is identified. These are the orbitals that are directly involved
in the chemical reaction and all possible configurations involving the active electrons
and active orbitals are included in the calculation. Finally, the virtual or empty orbitals
are identified.

A key step in an MCSCF calculation is the choice of starting orbitals. Usually,
the active space in a FORS MCSCF calculation contains the orbitals corresponding to
the bonds being broken and formed during some process of interest, the associated
antibonding orbitals, and sometimes lone pairs that may play an important role in the
process. Since this view of the active space is very chemical, a natural method for
obtaining the starting orbitals is to make use of the localized orbital capabilities in
GAMESS. The canonical molecular orbitals obtained directly from a Hartree-Fock
calculation may be transformed (18) to more "chemical" localized molecular orbitals
(LMO's) using well defined unitary transformations. In GAMESS this L M O
transformation may be performed either on the complete set of valence orbitals or

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T Parallel Implementation of GAMESS 23

separately within each symmetry block. The advantage of the latter is that the
preservation of symmetry minimizes the number of configuration state functions
(CSF's) in the MCSCF calculation. The use of LMO's for choosing the active space
makes it easy to identify the appropriate bonding MO's and lone pairs. In addition, it
is a simple matter to reverse the phase of the bonding MO's to construct the
corresponding antibonding orbitals needed to complete the active space. This is
frequently a more effective procedure than using the canonical orbitals, since the
canonical orbitals tend to be delocalized and therefore more difficult to identify as a
particular antibonding moiety. Another effective choice for correlating orbitals are the
modified virtual orbitals (27). These are derived from a cationic Fock operator, so they
possess more valence antibonding character than the neutral virtual orbitals.

Another issue that must be discussed is the actual bottlenecks of the MCSCF
calculation. Unlike the SCF code, the MCSCF has several different bottlenecks that
depend on the type of calculation performed. For example, a molecule with only a few
core orbitals and a relatively large active space will have the CI portion of the
calculation as the bottleneck. On the other hand, a molecule with many core orbitals and
a relatively small active space will have the transformation and the solution of the
Newton-Raphson (NR) equations as bottlenecks. Therefore, it is imperative that as
many of the steps as possible be parallelized. Because of limited space, only a brief
discussion of the amount of parallelization in each step will be presented. For details,
the reader should examine reference 2a. The sections that are completely sequential are
the initial orbital guess, calculation of the AO integrals, generation of the distinct row
table, formation of the augmented orbital Hessian and the N R solutions. Of these, the
first three are performed only once during the entire MCSCF energy calculation and
formation of the augmented orbital Hessian is essentially trivial. However, solving the
NR equations can be one of the major bottlenecks. The NR step is essentially a matrix
diagonalization that finds the lowest eigenvector of the augmented Hessian. As
mentioned earlier, parallel matrix diagonalizations are currently not very efficient (7).

Of the remaining steps in an MCSCF energy calculation, the molecular integral
sort, the calculation of contributions (loops) to the CI Hamiltonian (72), the calculation
of electron density matrices, formation of the Lagrangian and orbital Hessian (22) are
only partially parallelized. The code for calculation of the contributions to the CI
Hamiltonian and the electron density matrices have variable dependencies that are not
easy to unravel, so essentially only disk I/O (distribution of loops across all disks) is.
parallelized. The other steps have global summations of large, relatively sparse matrices
that require large amounts of communication. This communication time becomes
comparable to or even larger than the CPU time savings from running in parallel. As
mentioned earlier, these are probably places in the code where more care must be taken
to send only the non-zero contributions, instead of the entire matrix. Finally, the
integral transformation and the diagonalization of the Hamiltonian show very good
efficiencies even with up to five RS6000/350 nodes tied together by Ethernet. The most
time corisurning part of the Davidson diagonalization is the formation of the
Hamiltonian from the many loops distributed across all of the nodes. Each node forms
a partial contribution to HC, after which a global sum is performed. Since I/O is
performed in parallel, the scalability of this step is very good.

MCSCF gradients have also been parallelized so that actual chemical reactions can
be explored using the parallel MCSCF technology. Specific timing examples and more

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

24 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

detailed information for both the MCSCF energies and gradients can be obtained from
references 2a, 17a.

F. Analytic Hessians

Analytic Hessians in the M O basis involve several steps: (1) calculation of the A O
integrals and the appropriate wavefunction; (2) transformation of integrals from the A O
basis to the MO basis; (3) calculation of the one-electron second derivative (Hessian)
integrals; (4) calculation of the two-electron Hessian integrals; and (5) solution of the
coupled perturbed Hartree-Fock (CPHF) equations (23). Before a parallel
transformation was available, a small scale algorithm was used in GAMESS (4). In that
algorithm, all nodes would compute the one-electron Hessian integrals in parallel. Then,
the master node performed the transformation while the other nodes (generally only 1-3
other nodes) calculated the two-electron Hessian integrals in parallel. After the master
node finished with the transformation, it could participate in the calculation of the two-
electron Hessian integrals i f any were left to calculate. After steps 1-4 were finished,
only the master node would complete the calculation by solving the CPHF equations.

Now that a parallel transformation is available, steps 1-4 can be performed in
parallel. However, the full AO integral list must be calculated on each node and put
onto a local disk (if using the disk based method) so that the parallel transformation
works properly. This is an extra step that is not needed when the code is executed
sequentially. Unfortunately, most of the CPHF solution is still performed sequentially
and, after approximately 3 nodes, this becomes the computational bottleneck. Only the
I/O to form the various pieces needed to set up the CPHF equations is performed in
parallel. Since the matrices involved are quite large, the global summation takes
essentially all of the time saved by the parallel I/O. This algorithm is the only one
currently available in GAMESS.

As mentioned earlier, it is useful to make sure that the sequential code is relatively
up to date before parallelization. The current method for solving the CPHF equations
is relatively slow, so before an effort is made to parallelize this step, a new solver will
be implemented. Using the same example used when the first analytic Hessian
algorithm was published, Table II compares the computational times (on the master
node) for each of the two algorithms. The test case is the C s molecule 5-aza-2,8-dioxa-
l-stibabicyclo[3.3.0]octa-2,4,6-triene (Sb0 2NC 4H 4) using a 3-21G* basis set (24) giving
110 basis functions. The calculations were performed on three RS6000/350s dedicated
to the test. The Ethernet connecting the three machines was not dedicated to the test and
therefore, the tests had to compete with other packets on the network.

As can be seen in Table II, the new transformation is faster than the old one for one
node. Also, the CPHF solution for the new algorithm is faster on one node than is the
old algorithm. The actual CPHF code has not been changed. The difference in time
comes from the number of integrals that must be read in and used. In the old algorithm,
many of the integrals that were read in were discarded since the old algorithm performed
a full transformation. The new transformation calculates only those integrals that are
actually needed. The timing example also shows that indeed the CPHF step is the main

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T A L . Parallel Implementation of GAMESS 25

bottleneck at three nodes. It is very clear that parallelization of the CPHF solution is
needed before the scalability of the analytic Hessians can proceed to more nodes, but it
is likely that good speedups on up to dozens of nodes will be achieved eventually.

Table II. Timing example. Time in seconds for the master using the new/old
algorithm.

P= 1 2 3

setup 0.57/0.58 0.69/0.78 0.73/0.84
le- ints 1.10/1.12 0.87/0.86 0.88/0.84
huckel guess 15.77/15.77 15.74/16.46 16.17/16.96
2e- intsa 111.19/133.90 55.34/62.41 37.42/39.48
SCF cycles5 223.13/190.87 103.26/103.92 79.44/66.25
properties 2.23/1.61 2.46/2.44 2.63/2.78
2e- ints - /206.23 111.28/211.29 110.97/213.38
transformation0 1113.67/1881.05d 552.38/1902.15 381.09/1897.92
le-hessints 28.20/28.62 16.46/17.05 14.63/14.74
2e- hess ints 3322.92/3367.57 1668.86/83.93 1113.37/12.41
CPHF 1438.66/1653.75 1433.34/1673.50 1477.32/1664.48

total CPU 6258.01/7481.69 3961.34/4075.05 3235.27/3930.85

a. 6,125,653 AO integrals.
b. 13 iterations.
c. 5,871,750 MO integrals.
d. This time includes the integral ordering needed in the old transformation as well as
the actual transformation time.

G. Parallel MP2 Code

A new MP2 code from HONDO (14) has been incorporated into GAMESS. Since
this code had already been parallelized, the parallel calls in the new code were
translated to TCGMSG. A brief description of the HONDO algorithm used will be
presented here.

The MP2 code includes its own specialized transformation. If the A O integrals
are calculated directly, the MP2 transformation is essentially the same as the one
described earlier in this paper. However, the disk based transformation works
differently. The MP2 transformation assumes that the AO integrals are distributed
across all of the nodes. Each node is assigned a range of M O integrals to calculate.
Then, each node (in its turn) reads in a buffer load of integrals, broadcasts the buffer to
all other nodes, and calculates the contributions of those AO integrals to its range of M O
integrals. When all of the AO integrals from every node have been used, the M O
integrals are used to form contributions to the MP2 energy. Thus, the actual M O
integrals are not sent to disk, only held in memory. If the nodes cannot hold their ranges
of M O integrals in memory, several passes over the AO integrals are needed. This

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

26 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

transformation has the advantage that it uses the AOs as they are distributed across the
nodes (i.e. the entire A O list does not need to be calculated on each node). However,
it does require the broadcast of order N 4 A O integrals resulting in a large amount of
communication. This particular implementation of the algorithm also has the
disadvantage that it is only implemented for RHF wavefunctions.

H. Conclusions

Most of the functionality of GAMESS now executes in parallel. Table III provides a
summary of the parallel portions of GAMESS.

While most of GAMESS has been parallelized, further optimizations of existing
algorithms and better algorithms are needed to improve the general efficiencies of the
code. Specifically, the following areas need more work: parallel matrix diagonalizations
(directly affecting the SCF and NR solution in the MCSCF); large global summations
of large sparse matrices need to be made much more efficient; solution of the CPHF
equations in parallel; and new parallel transformations are needed.

Table III: Tabulated overview of parallel GAMESS

Energy Gradient Hessiana MP2 CI Semi

RHF X X X χ X

UHF X X

ROHF X X X X

G V B X X X X

MCSCF X X X

a. Refers to analytic evaluation. Numerical Hessians are available whenever analytic
gradients are available.

Acknowledgement

The authors are grateful to Dr. Michel Dupuis for permission to incorporate his
serial partial integral transformation code and his parallel RHF MP2 program into
GAMESS. This work was supported by a grant from the Air Force Office of Scientific
Research (93-1-0105), a Department of Education G A A N N followship to T L W and
with the assistance of the Advanced Research Projects Agency. The I B M RS6000s
were provided by Iowa State University.

References

1.(a) Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen,
J.H., Koseki, S.; Matsunaga, N., Nguyen, K.A.; Su, S.; Windus, T.L.; Dupuis, M.;
Montgomery Jr., J.A. J.Comput.Chem. 1993, 14, 1347; (b) Dupuis, M.; Watts, J.D.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

2. W I N D U S E T A L . Parallel Implementation of GAMESS 27

Theor.Chim.Acta 1987, 71, 91; (c) Guest, M.F.; Harrison, R.J.; van Lenthe, J.H.; van
Corler, L.C.H. Theor.Chim.Acta 1987, 71, 117; (d) Ernenwein, R.; Rohmer, M.M.;
Benard, M. Comput.Phys.Comm. 1990, 58,305; (e) Rohmer, M.M.; Demuynck, J.;
Benard, M.; Wiest, R.; Bachmann, C.; Henriet, C.; Ernenwein, R. Comput.Phys.Comm.
1990, 60, 127; (f) Harrison, R.J.; Kendall, R.A. Theor.Chim.Acta 1991, 79, 337; (g)
Cooper, M.D.; Hillier, I.H. J.Computer-Aided Molecular Design 1991, 5, 171; (h)
Kindermann, S.; Michel, E.; Otto, P. J.Comput.Chem. 1992, 13, 414; (i) Luthi, H.P.;
Mertz, J.E.; Feyereisen, M.W.; Almlof, J.E. J.Comput.Chem. 1992, 13, 160; (j) Brode,
S.; Horn, H.; Ehrig, M.; Moldrup, D.; Rice, J.E.; Ahlrichs, R. J.Comput.Chem. 1993, 14,
1142; (k) Feyereisen, M.; Kendall, R.A. Theor.Chim.Acta 1993, 84, 289; (1) Colvin,
M.E.; Janssen, C.L.; Whiteside, R..A.; Tong, C.H. Theor. Chim. Acta 1993, 84, 301; (m)
Also see Theor. Chim. Acta 1993, 84 (No. 4-5), 255ff.
2. (a) Windus, T.L.; Schmidt, M.W.; Gordon, M.S. Theor.Chim.Acta in press; (b) Watts,
J.D.; Dupuis, M. J.Comput.Chem. 1988, 9, 158; (c) Rendall, A.P.; Lee, T.J.; Lindh, R.
Chem.Phys.Lett. 1992, 194, 84; (d) Harrison, R.J. J.Chem.Phys. 1991, 94, 5021; (e)
Harrison, R.J.; Stahlberg, E. CSCC Update 1992, 13, 5; (f) Schuller, M.; Kovar, T.;
Lischka, H.; Shepard, R.; Harrison, R.J. Theor.Chim.Acta 1993, 84, 489.
3.(a) Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.; Schaefer III, H.F. J.Chem.Phys.
1987, 86, 2185; (b) Covick, L.A.; Sando, K.M. J.Comput.Chem. 1990, 11, 1151; (c)
Wiest, R.; Demuynck, J.; Benard, M.; Rohmer, M.M.; Ernenwein,R.
Comput.Phys.Commun. 1991, 62, 107; (d) Limaye, A.C.; Gadre, S.R. JChem.Phys.
1994, 100, 1303.
4. Windus, T.L.; Schmidt, M.W.; Gordon, M.S. Chem.Phys.Lett. 1993, 216, 375.
5. (a) Pople, J.A.; Binkley, J.S.; Seeger, R. Int.J.Quantum Chem. 1976, 10, 1; (b) Carsky,
P.; Hess, B.A.; Schaad, L.J. J.Comput.Chem. 1984, 5, 280.
6 (a) Brooks, B.; Schaefer III, H.F. J.Chem.Phys. 1979, 70, 5092; (b) Brooks, B.;
Laidig, W.; Saxe, P.; Handy, N.; Schaefer III, H.F. Physica Scripta 1980, 27, 312.
7. Stewart, J.J.P. J Computer-Aided Mol.Design 1990, 4, 1.
8. Roothaan, C.C.J. Rev.Mod.Phys. 1951, 23, 69.
9. Pople, J.A.; Nesbet, R.K. J.Chem.Phys. 1954, 22, 571.
10. Guest, M.F.; Saunders, V.R. Mol.Phys. 1974, 28, 819.
11. Bobrowicz, F.W.; Goddard, W.A. Modern Theoretical Chemistry, H.F. Schaefer,
Ed., Plenum Press, New York, 1977, p. 79.
12. General review: Roos, B.O. Methods in Computational Molecular Physics. G.H.F.
Diercksen, S. Windson, Eds., D. Reidel Publishing, Dordrecht, Holland, 1983, p.161.
13.(a) Harrison, R.J. Int.J.Quantum Chem., 1991, 40, 847; (b) Harrison, R.J. version
4.0.2. is available by anonymous ftp in directory /pub/tcgmsg from host ftp.tcg.anl.gov.
14.(a) Dupuis, M.; Chin, S.; Marquez, M. Relativistic and Electron Correlation Effects
in Molecules and Clusters, G.L. Malli, Ed., NATO ASI Series, Plenum Press, New
York, 1992; (b) Hollauer, E.; Dupuis, M. J.Chem.Phys. 1992, 96, 5220.
15.(a) Ditchfield, R.; Hehre, W.J.; Pople, J.A. J.Chem.Phys. 1971, 54, 724; (b) Hehre,
W.J.; Ditchfield, R.; Pople, J.A. J.Chem.Phys. 1972, 56, 2257.
16. Shepard, R. Theor. Chim. Acta 1993, 84, 343.
17.(a) Windus, T.L.; Schmidt, M.W.; Gordon, M.S. Mardi Gras Symposium 1994,
submitted; (b) Schmidt, M.W.; Windus, T.L.; Jensen, J.; Matsunaga, N.; Cundari, T.R.;
Boatz, J.A.; Baldridge, K.K.; Gordon, M.S. ACS Symp. Series on Parallel Computing
1994, in preparation.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

http://Theor.Chim.Acta
http://Chem.Phys.Lett
http://Rev.Mod.Phys
ftp://ftp.tcg.anl.gov

28 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

18.(a) Boys, S.F. Quantum Theory of Atoms, Molecules, and Solids, P.O. Lowdin, Ed.,
Academic Press, New York, 1966, p. 253; (b) Kleier, D.A.; Halgren, T.A.; Hall, J.H.;
Lipscomb, W.N. J.Chem.Phys 1974, 61, 3905; (c) Pipek, J.; Mezey, P.G. J.Chem.Phys.
1989, 90, 4916; (d) Edmiston, C.; Ruedenberg, K. Rev.Mod.Phys. 1963, 35, 457.
19.(a) Ruedenberg, K.; Schmidt, M.W.; Gilbert, M.M.; Elbert, S.T. Chem.Phys. 1982,
71, 41; (b) Ruedenberg, K.; Schmidt, M.W.; Gilbert, M.M. Chem.Phys. 1982, 71, 51;
(c) Ruedenberg, K.; Schmidt, M.W.; Gilbert, M.M.; Elbert, S.T. Chem.Phys. 1982, 71,
65.
20. Siegbahn, P.E.M.; Almlof, J.; Heiberg, Α.; Roos, B.O. J.Chem.Phys. 1981, 74, 2384.
21. Bauschlicher, C.W. J. Chem. Phys. 1980, 72, 880.
22. Siegbahn, P.; Heiberg, Α.; Roos, B.; Levy, B. Physica Scripta 1980, 21, 323.
23. (a) King, H.F.; Komornicki, A. Geometrical Derivatives of Energy Surfaces, P.
Jorgenson, J. Simon, Eds. NATO ASI Ser. C., Vol. 166, Reidel Publishing, Dordrecht,
1986, p. 207; (b) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D.J.; Vincent, M.A.;
Schaefer III, H.F. J.Mol.Struct. 1983, 103, 183; (c) Duran, M.; Yamaguchi, Y.; Schaefer
III, H.F. J.Phys.Chem. 1988, 92, 3070.
24. (a) Binkley, J.S.; Pople, J.A.; Hehre, W.J. J.Am.Chem.Soc. 1980, 102, 939; (b)
Dobbs, K.D.; Hehre, W.J. J.Comput.Chem. 1986, 7, 359.
RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

http://Rev.Mod.Phys

Chapter 3

Applications of Parallel GAMESS

Kim K. Baldridge1, Mark S. Gordon2, Jan H. Jensen2,
Nikita Matsunaga2, Michael W. Schmidt2, Theresa L. Windus3,

Jerry A. Boatz4, and Thomas R. Cundari5

1San Diego Supercomputer Center, P.O. Box 85608, San Diego, CA 92186
2Department of Chemistry, Iowa State University, Ames, IA 50011

3Department of Chemistry, Northwestern University, Evanston, IL 60208
4Phillips Laboratory, OLAC PL/RKFE,

Edwards Air Force Base, CA 93523
5Department of Chemistry, University of Memphis, Memphis, TN 38152

In this paper we discuss several recent applications that would have been
difficult or impossible without the availability of the parallel
implementation of the electronic structure code GAMESS. These
applications include the study of highly strained rings, such as inorganic
prismanes and bicyclobutanes, cage compounds such as cyclophanes and
atranes, the neutral <-> zwitterion isomerization of glycine, transition
metal-main group binding, and the implementation of parallel graphics.

The previous paper presented an outline of the strategy used in converting the electronic
structure code GAMESS to a general parallel code [1]. In this paper, we turn to a brief
discussion of several applications of this code. The parallel capability of GAMESS has
already been used to solve a broad spectrum of problems of importance to organic,
inorganic, organometallic, and biochemistry that would otherwise have been impossible
within a reasonable time frame. Indeed, the parallel capability allows us to perform
calculations on relevant compounds within a time frame that is meaningful to
experimental colleagues. Several of these applications are summarized in the
following sections.

I. Highly Strained Rings

An important area of application for parallel GAMESS has been the design of
metastable species that have potential as new high energy fuels or fuel additives. Two
such endeavors have been the study of the potential energy surface of the B N analog of
prismane and the tetrasila analog of bicyclobutane.

A. BN Prismanes
A n example of the performance (and the difficulties) of parallel SCF calculations is
provided by the B N analog of prismane,

0097-6156/95A)592-0029$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

30 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

a high energy isomer of the benzene analog borazine. This relatively small example
(169 basis functions) serves to illustrate some of the successes and potential bottlenecks
that arise from parallel computations. The results are summarized in Table 1, where the
speedups for an energy plus gradient run are presented as a function of the number of
processors. The overall speedup (last column) is essentially perfect (100%) through 8
processors, 92% through 16 processors, and slowly tails off as the number of processors
increases to 256. Even at 256 processors there is a better than 25% speedup, and one
expects that as the size of the problem is increased, the tailing off of efficiency will
occur more slowly. The source of the loss in efficiency as the number of processors
increases may be determined by analyzing the middle three columns of the table. While
the two-electron gradients are essentially perfectly parallel, the efficiency of the Hartree-
Fock part of the calculation parallels that of the overall job. Further analysis reveals
that, while the calculation is dominated by the (almost perfectly parallel) integrals plus
gradients for small numbers of processors, the sequential Fock matrix diagonalization
becomes a larger percentage of the calculation as the number of processors is increased.
Since matrix diagonalizations are such an important part of electronic structure
calculations, an effective treatment of this part of the calculation in parallel
computations must be addressed.

Table 1. Incremental Performance Advantage and Efficiency of BN Prismane*

Proc. int + RHF le" grad 2e~ grad total

8 1.0 1.0 1.0 1.0

16 1.87(93.5) 1.89(94.5) 1.98(99.0) 1.84(92.0)

32 3.26(81.5) 1.56(39.0) 3.91(97.8) 3.09(77.2)

64 5.22(65.2) 1.59(19.9) 7.64(95.5) 4.74(59.2)

128 7.77(48.6) 3.19(19.9) 4.74(92.1) 6.74(42.1)

256 10.02(31.3) 3.36(10.5) 27.32(85.4) 8.35(26.1)

''The values in parentheses are efficiencies. The calculations are carried out at the RHF/6-31 lG(2d,2p)//RHF/SBK(d)
level of theory (204 basis functions) on a 512-node Intel's Touchstone Delta (16Mb memory/node).

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. B A L D R I D G E E T A L Applications of Parallel GAMESS 31

The known potential energy surface for B N prismane is shown in Figure 1. At
the MP2/SBK(d)//RHF/SBK(d) level of theory, B N prismane is 161 kcal/mol higher in
energy than the borazine global minimum [2]. Several other minima have been found
on this surface, including a planar isomer of borazine that is itself 100 kcal/mol higher
in energy than borazene. To date, no direct route from B N prismane to borazine has
been found, and all routes leading from B N prismane appear to involve energy barriers
in the range of30-40 kcal/mol. Of particular interest is the pair of three-membered rings
shown at the right in the figure. Since these rings lie 40 kcal/mol above B N prismane,
they may provide a synthetic route to this high energy species. Potential syntheses are
being explored at Rockwell Science.

B. Tetrasilabicyclobutanes

The tetrasila-analog of bicyclobutane has been of interest for several years, since it is
predicted [3] by electronic structure theory to exist as two isomers (Figure 2) that differ
primarily in the length of the bridgehead Si-Si distance, a normal 2.35À in the short
bond (SB) isomer and a much longer 2.9Â in the long bond (LB) isomer. In the
unsubstituted compound, the LB isomer is predicted to be lower in energy by about 10
kcal/mol, at the GVB/6-31G(d) level of theory. The only analog that has been
synthesized is highly substituted, with t-butyl groups replacing the hydrogens at both
bridgehead positions and substituted phenyl rings at the peripheral positions. In contrast
to the theoretical predictions, only the SB isomer is found for this substituted compound.
This difference between theory and experiment is important to understand. The
unsubstituted compound (which has not yet been synthesized), may be used as an
additive to the most common propellant used in space launches: liquid oxygen
(LOXyiiquid hydrogen (LH2) mixtures. Using 2.5 mole % of the unsubstituted
compound in LOX/LH2 is found to increase the specific impulse (Isp, the most common
measure of fuel effectiveness, is proportional to the energy gain and inversely
proportional to the mass of the combustion products) by 11 seconds. This translates into
a savings of several million dollars per launch. Therefore, GVB/6-31 G(d) calculations
were performed on the SB->LB isomerization as a function of the group R in the
bridgehead positions. As shown in Table 2, increasing the size of the bridgehead
substituents, destabilizes the LB isomer, relative to the SB isomer. This explains why
only the SB isomer is found experimentally. Of particular interest is our prediction that
the two isomers of the dimethyl analog are nearly isoenergetic, separated by about a 6
kcal/mol barrier. This suggests that both isomers of the dimethyl compound may
be synthesized. Note that the size of the basis set for the di-t-butyl species (nearly 200
basis functions) necessitated the use of parallel GAMESS for the timely completion of
the project.

IL Cage Compounds

We have recently been interested in a series of cage compounds that may be generally
represented as

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

32 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

•185.0
(-161.2)

Figure 1. RHF/SBK(d) Potential Energy Surface of BN Prismane.
The values are in kcal/mol. The values in parentheses are of MP2
relative energies. A l l ZPE's are corrected by multiplying by 0.89.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. B A L D R I D G E E T A L . Applications of Parallel GAMESS 33

R

With the apex E atom = Si, P, Ti , etc., they are silatranes, phosphatranes, titanatranes,
etc. The impact of the equatorial atoms Y attached to Ε (e.g., Υ = Ν are aza-atranes) and
the axial substituents R on the chemical and physical properties of the atranes is of
considerable interest. Silatranes, for example, are precursors for new SiO materials,
while the phosphatranes are strongly basic compunds with great potential as catalysts.
When the base of the cage compounds is a benzene ring, with the three methylene
strands attached at the 1,3,5 positions, these compounds are cyclophanes.

A . Cyclophanes

Pascal has synthesized the carbon cyclophane, with the bridgehead Η pointing inside
(ENDO) the cyclophane ring [4]. This unusual geometric arrangement prompted
(unsuccessful) experimental efforts to synthesize the sila-analog. In an attempt to
understand why (apparently) the ENDO structure is preferred in the carbon compound,
whereas the EXO structure is preferred in the silicon compound, we performed a series
of RHF/6-31G(d) calculations on both C and Si cyclophanes [5]. The ab initio
calculations predict that the ENDO isomer is 13 kcal/mol lower in energy than E X O , in
agreement with Pascal's experiments. Replacing the apex carbon with a silicon results
in a dramatic reversal of stability, with the EXO structure now preferred by 43 kcal/mol!
Again, this is consistent with the synthetic difficulties for this species. A simple
explanation for this lies in the bond dipoles of C-H vs. Si-Η. Whereas the former bond
is polarized C" FT, the latter is polarized Si +H" . So, in the carbon case one has a
positively charged Η pointing towards the negative benzene π cloud, whereas in the
silicon compound it is a negative II that points toward the π cloud. So, for C it is an
attractive interaction, while for Si the interaction is repulsive. This assertion may be
assessed in two ways. One might consider replacing the Η at the bridgehead by a more
electropositive element, such as L i . Doing so makes the ENDO structure only slightly
(3 kcal/mol) more favorable for the C case, but stabilizes the ENDO structure by 40
kcal/mol for Si! One might also enlarge the cage from two to three carbons/strand, to
alleviate the repulsive interaction and the internal crowding. For the carbon compound,
the larger cage favors the ENDO structure by 18 kcal/mol, as compared with 13
kcal/mol for the smaller cage. For the silicon species, the larger cage favors E X O by
only 2.5 kcal/mol, compared with 43 kcal/mol for the smaller cage. These extensive
calculations, made possible by parallel electronic structure codes, therefore predict that
it may be possible to synthesize the ENDO structure by making the cage one carbon
larger.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

short bond long bond
isomer isomer

Figure 2. Bond Stretch Isomerism.
GVB/3-21G(d) ab initio calculations predict the long bond isomer
to be more stable by 10 kcal/mol.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. B A L D R I D G E E T A L . Applications of Parallel GAMESS 35

Table 2. R e l a t i v e Energies of I^Si^H^ Bond-Stretch Isomers a

R = H

Le v e l of theory SB TS LB

GVB/3-2lG*//GVB/3-2lG* 0.0 2.1 -9.6
(0.0) (2.0) (-9.7)

GVB/6-3lG(d)//GVB/3-21G* 0.0 1.1 -12.4
(0.0) (1.0) (-12.5)

SOCI/6-31G(d)//GVB/3-21G* 0.0 1.3 -10.1
(0.0) (1.1) (-10.1)

R = CH 3

SB TS LB

GVB/3-21G*//GVB/3-21G* 0.0 6.3 -1.9
(0.0) (6.3) (-2.0)

GVB/6-31G(d)//GVB/3-21G* 0.0 4.5 -4.5
(0.0) (4.5) (-4.6)

SOCI/6-31G(d)//GVB/3-2lG* 0.0 5.1 -1.8
(0.0) (5.1) (-1.9)

R = C(CH 3) 3

SB TS LB

GVB/3-2lG*//GVB/3-21G* 0.0 7.2 4.9
(0.0) (6.9) (4.6)

GVB/6-3lG(d)//GVB/3-21G* 0.0 6.0 2.5
(0.0) (5.7) (2.2)

SOCI/6-3lG(d)//GVB/3-2lG* 0.0 6.8 5.1
(0.0) (6.5) (4.8)

a Energies i n kcal/mol. ZPE-corrected energies i n parentheses.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

36 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

B. Silatranes

In the solid state, most silatrane trans-annular (SiNJ distances are 2.05 - 2.20Â. This
is considerably shorter than the sum of the van der Waals radii (3.5Â), but much longer
than typical SiN single bond lengths (1.7-1.8Â). These relatively weak SiN t bonds are
even longer in the gas phase. The two gas phase structures (for R = F[6] and CH3[7])
reveal SiN t distances that are 0.28Â longer than those in the corresponding crystals. The
solution phase SiN t distances appear to be intermediate between those in the gas phase
and solid state [8]. This indicates that the SiN t bond is weak and easily deformed.

The silatrane series (E = Si) has been studied as a function of Υ (= Ο, N H , NMe,
CH 2) and R (= H, F, OH, N H 2 , C H 3 , C l , SH, PH 2 , SiH 3) [9]. Key issues are the
fundamental nature of the transannular SiN t interaction and the difference between gas
and condensed phases. The geometry optimizations were performed at the SCF level
of theory, mostly using the 6-31 G(d) basis set. The general approach has been to obtain
starting structures with semi-empirical A M I [10] or PM3[11] geometry optimizations
and hessians. The ab initio calculation (run in direct mode) typically required 400-800
minutes of time on 128 nodes of the Intel Touchstone Delta at CalTech.

Because the SiN t bond is so weak, it is difficult to accurately reproduce the
experimental distances. At the RHF/6-31 G(d) level of theory, the two known gas phase
SiN t distances are over-estimated by more than 0.2Â. Expanding the basis set to include
two sets of d functions on Si and its five adjacent heavy atoms, plus a set of diffuse sp
functions on the same six heavy atoms, decreases the SiN t distance in the R = F silatrane
by 0.12À to 2.416Â, bringing it into much closer agreement with the experimental value
of 2.32Â. The remaining error is due to correlation and additional basis set effects.

The softness of the SiN t bond is dramatically illustrated by plotting the energy
of the R = F silatrane as a function of the SiN, distance. When this distance is varied
over a 0.5Â range, the energy increases by only 4 kcal/mol! This means that crystal
packing forces need not be larger than 1 kcal/mol to produce the observed 0.28À
compression of the silatrane SiN t bond. The effect of condensed phase on the SiN t

distance has been investigated by modeling the effect of solvent DMSO with a simple
reaction field cavity model [12]. A cavity radius of 3.67Â, derived from the
experimental density of fluorosilatrane, and a dielectric constant of 45 were used in
these simulations. Re-optimization of the geometry in the presence of solvent decreases
the SiN t distance by 0.31Â, essentially the difference between the experimental gas
phase and crystal bond lengths! In addition to the softness of the SiN t surface already
discussed, this large change in the SiN t distance is also due to the large dipole moment
in the silatranes which interact strongly with the solvent dielectric.

Finally, Boys localized molecular orbitals (LMO's) [13] have been used to
develop an understanding of the nature of the SiN t bond. These L M O ' s illustrate that
the SiN t bonds are best described as nitrogen lone pairs, interacting only weakly with
the transannular silicon atoms. This supports the interpretation of these bonds as dative
in character, in agreement with the description put forth by Haaland [14].

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. BALDRIDGE ET AL. Applications of Parallel GAMESS 37

C. Phosphatranes

The proton affinities of a series of azaphosphatranes (Ε = Ρ, Υ = Ν) have been studied
to determine their relative base strengths and the effect of substitution and protonation
on the transannular PN t interaction [15]. As was the case for the silatranes discussed
above the ab initio investigation of this large group of complex molecules (substituents
Ζ on Ρ = H + , F + , (X , C H 2 , C H 3

+ , NH, N H 2

+ , 0 , 0 +) would have been impractical without
the availability of parallel electronic structure codes and parallel computers. These
calculations were performed on the Intel Touchstone Delta, in a manner analogous to
that described above for the silatranes, using similar basis sets at the SCF level of
theory. Four molecules, with Ζ = C H 2 or NH, have been found to be stronger bases than
the parent compound, suggesting that these species are likely targets for new catalysts.
Analysis of the PN t distances and electron density analyses show that there is clear
evidence for transannular dative bonding in the cationic species. Protonation clearly
results in a dramatic strengthening of this bond. The corresponding bond distances
decrease by more than 1Â! The use of the reaction field model to simulate the solvent
DMSO suggests that the basicity trends found for the gas phase compounds are not
changed in solution.

III. Glycine Isomerization

It is well known that in solution amino acids exist primarily as zwitterions (Z), whereas
in the gas phase only the neutral structure (N) is a minimum on the potential energy
surface (PES). It is not clear, however, what forces fundamentally operate to stabilize
Ζ relative to N . One can, for example, simulate the bulk effects of aqueous solution
using a simple reaction field model [16J, and such calculations do predict the Ζ form to
be more stable. However, such calculations do not address the role played by individual

electronic interactions between water molecules from the solvent and the amino acid.
To explore this question, we have employed ab initio quantum chemistry to explore the
effects on the Ν <-> Ζ equilibrium of successively adding water molecules to the
simplest amino acid glycine. The geometry optimizations and subsequent tracing of the
minimum energy paths (MEP's) were performed at the SCF level of theory, on the 16
node iPSC 860 Intel parallel computer, located at Kirtland A F B , using both the 6-
31 G(d) [17] and Dunning DZP [18] basis sets. Additional single point calculations were
performed at both the MP2 and MP4 levels of theory [19], using the aforementioned
basis sets, as well as the Dunning correlation consistent basis sets [20].

Krogh-Jespersen has recently demonstrated that Ζ is not a minimum on the

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

38 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

isolated glycine PES [21], when adequate basis sets are used. The energetics for the
isomerization of the glycine-H20 complex are summarized in Figure 3. At the SCF
level of theory minima are found at both the Ν and Ζ structures; however, the transition
state separating the two isomers, and therefore the Ζ minimum, disappears at correlated
levels of theory. Note that the water molecule does not directly particpate in the proton
transfer. Rather, it functions as an observor, so we refer to this process as intramolecular
proton transfer. It is important to note that the use of larger basis sets and higher levels
of perturbation theory (i.e., MP4) have less than a 1 kcal/mol effect on the predicted
energetics. The MP2/DZP++//SCF/DZP energy of the neutral glycine-water complex
is 12.8 kcal/mol below that of the zwitterion when vibrational zero point (ZPE)
corrections are included. The same Ζ structure shown in Figure 3 can transfer a proton
through the water molecule (water-assisted proton transfer), via a different transition
state. The energetics for this process are shown in Figure 4. Unlike the intramolecular
proton transfer, the transition state for the water-assisted proton transfer still exists upon
the addition of larger basis sets and correlation corrections. Addition of ZPE corrections
does raise Ζ above the transition state, and the same Ζ structure is unstable to
isomerization via the intramolecular route. However, these results suggest that the
water-assisted proton transfer may be the more viable way to stabilize Ζ in cases for
which more than one Ζ·ηΗ 2 0 isomer may exist.

The energetics for the intramolecular and water-assisted proton transfer
mechanisms for the glycine-2H20 complex are shown in Figures 5 and 6, respectively.
The features of the potential energy curve for the intramolecular route are similar to
those for the single water complex. This Ζ complex is found to be a minimum at the
SCF level of theory, but the transition state again disappears at correlated levels of
theory. Unlike the single water case, the water-assisted route for glycine-2H20
originates from a different (essentially isoenergetic) Ζ isomer. This is important,
because we find that the transition state for this route remains higher than both Ζ and N ,
even after the addition of correlation and ZPE corrections. It is also important that the
Ζ isomer is found to be only 4.8 kcal/mol higher in energy than N , in the presence of
two water molecues. It is reasonable to consider that part of the PES that connect the
two glycine-2H20 zwitterion structures, corresponding to the intramolecular and water-
assisted routes. The transition state that connects these two structures has been
identified, and the barrier separating them is 8 kcal/mol at the MP2/DZP++ level of
theory. So, the glycine-2H20 zwitterion appears to be a stable minimum on the PES.
These results clearly demonstrate that electronic interactions between the amino acid
and individual solvent molecules play a crucial role in the stabilization of the zwitterion
species.

IV. Transition Metal Complexes

The transition metals (TMs) constitute a family of elements of importance in advanced
materials, biochemistry, and catalysis. [22] The large size of many T M complexes and
the demands of the methods needed to accurately describe their chemistry make parallel
computing very attractive in this area. Our main algorithmic approach to the challenges
of computational T M chemistry entails the design, testing and use of effective core

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. BALDRIDGE ET AL. Applications of Parallel GAMESS 39

Figure 3. Intramolecular proton transfer IRC and energetics for the glycine-H20
complex.

Figure 4. Water-assisted proton transfer IRC and energetics for the glycine-H20
complex.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

40 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 5. Intramolecular proton transfer IRC and energetics for a glycine*2H20
complex.

Figure 6. Water-assisted proton transfer IRC and energetics of a glycine*H20
complex.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. BALDRIDGE ET AL. Applications of Parallel GAMESS 41

potentials (ECPs).[23] It is important to compare the efficiency of parallel ECP codes
with traditional all-electron methods. The challenges which arise in applying quantum
chemical methods to TMs have been discussed in more detail previously. [23, 24) A
representative problem is chosen below to illustrate the possibilities for parallel code in
T M chemistry.

Recently there has been a great focus on complexes with multiple bonds between
TMs and heavier main group (MG) elements. [25] Apart from a fundamental interest in
multiple bonding involving heavier M G elements such complexes have been envisioned
as precursors and intermediates in the synthesis of solid-state advanced materials. [25]
A n exciting series of TM=MG(heavy) complexes is provided by Parkin and
Howard[25a,b], Cp'2M(E)py, 1 (Figure 7). Using the parallel version of GAMESS[26]
we can model the parent Cp 2 ME, 2, in conjunction with these experimental studies.
Calculated M E bond lengths (in Â) at the RHF level are (experiment in parentheses)
ZrO = 1.76 (1.804(4)), ZrS = 2.28 (2.334(2)), ZrSe = 2.42 (2.480(1)), ZrTe = 2.68
(2.729 (1)).[25a] The results are of equal quality for Hf analogues.[25b] The Ti-oxo
bond length in Cp 2TiO is 1.61 , in good accord with TiO = 1.665(3) in Cp*2Ti(0)(4-
phenyl-py) (Cp* = η 5 - C5Me5).[27] Uniformly good agreement between theory and
experiment from the lightest (Cp2TiO) to heaviest (Cp2HfTe) member in the series is a
powerful demonstration of the ability of parallel codes to open up all areas of the
Periodic Table to computation.

The example discussed above highlights two important points about the promise
of parallel computing. On a standard workstation, geometry optimization and
calculation of the energy hessian for a complex such as_2 can take several weeks, but
just a few hours to a day on a parallel platform depending on the number of processors
and their power. Vast reductions in wall clock time are thus realized through the use of
parallel algorithms and architectures. A second related point is that parallel
supercomputers make it possible to more closely model experimental systems. Making
the model as close as possible to an experimental system has important scientific
implications - errors between theory and experiment can be more confidently ascribed
to deficiencies in the model or deductions based on experimental evidence. Although
2 is not a perfect model of 1 it is significantly larger than is feasible to study without
parallel computers; further improvements in methods and technologies will enable direct
study of 1. With parallel computing more realistic model complexes with the bulky
ligands that organometallic chemists use to engender kinetic and thermodynamic
stability can be studied. In other words, the chemistry that occurs in the CPU more
closely resembles that which occurs in the test tube. Thus, the promise of parallel
computing lies in the more productive collaborations between theory and experiment it
affords through the study of larger, more accurate models in a shorter period of time.
This is an important consideration in meeting the grand challenges of computer-aided
design in catalysis and advanced materials, where transition metals play a very
important roles.

V. Graphics for the Parallel World

The detailed nature of chemical questions being asked and hence the degree of
complexity in molecular blueprints are increasing at a rate only manageable by advanced

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 7. 1. Experimental Complex.
2. Computational Model.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. BALDRIDGE ET AL. Applications of Parallel GAMESS 43

computing methods, as exemplified with the applications of parallel GAMESS given
above. Despite the extraordinary abilities of modern hardware technology and coding
methods to manipulate the raw data, the rate limiting step in harmonizing the intricacy
and precision required to push forward these chemical frontiers ultimately comes down
to the process of man-machine information transfer. Along this line, words are to scalar
processing what images are to parallel processing, thus, the development of versatile and
facile three-dimensional visualization tools is the key to any successful human interface
in this endeavor.

Quantum Mechanical View (QMView) [28] has been designed to provide the
chemist with an expansive array of molecular perspectives. QMView is an integrated
visualization package which capitalizes on the increased capabilities of new graphics
systems to profile three-dimensional molecules not only by their common ball-and-stick
or space-filling models, techniques which convey limited geometrical information, but
also by molecular orbitals, electron densities (differential and absolute), electrostatic
potential gradients, vibrational normal modes, regional hydro- or lipophilicity. Each
profile can be adjusted, updated and presented three-dimensionally, fully colorized and
in real time.

Figure 8 shows the top level interface illustrating the various capabilities of
QMView with the five icons: display of 1) structure, 2) vibrational modes, 3) electron
properties, 4) molecular orbitals, and 5) special features. The special features include
options to run in distributed mode, and special educational tutorials. Surface data (i.e.,
3 and 4) can be displayed in various manners, including options of two- or three-
dimensional pictures with choices of net, solid[29] or transparent surfaces.

The second icon from the left in Figure 8 shows a static schematic of the
imaginary vibrational mode for the bowl-to-bowl interconversion of corannulene, as
calculated with local density functional theory (LDA)[30]. QMView displays
vibrational motions in real time after selection of the particular mode frequency from
a pull-down menu. There are mouse-driven buttons to choose the number of frames for
which to display the vibration, and controls over the smoothness and amplitude of the
motion.

The third icon from the left in Figure 8 illustrates the total electron density of
the anthracene photodimer, lepidopterene[31], in terms of a net surface, as calculated
using GAMESS. This is one of the largest geometrical optimizations performed on the
SDSC Intel Paragon to date, with 494 basis functions at the 6-3 lG(d,p) level of theory
on 32 (32 MB) nodes.

Figure 9 depicts the highest occupied, bonding molecular orbital (HOMO)
superimposed on a transparent electron density surface of the C 2 0 fullerene molecule, as
calculated using the local density approximation [32]. Theoretical calculations have
allowed researchers to asess the stability of this molecule relative to other isomers [33].

An added feature of QMView is an interface to run in a distributed mode with
the parallel platforms, specifically the Intel Paragon at SDSC. In distributed mode,
parallel GAMESS, running on the Intel Paragon, computes the information that
QMView displays in real time. The display includes the last configuration that has been
calculated by GAMESS, along with (optionally) two inset x-y graphs, one of which

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

44 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 8. The first layer of the graphical user interface of QMVlEW. The icons
represent a sampling of QMVIEW functions (chosen by picking with the mouse):
Upper left: Depiction of the molecular structure of kuratowskaphane.
Lower left: Depiction of the bowl-to-bowl vibrational motion in corannulene.
Lower middle: Depiction of the total electron density of lepidopterene.
Lower right: Depiction of the molecular orbitals for water.
Upper right: This icon allows one to view a) a depiction of a calculation
as it is riuining on a supercomputer platform (e.g., C R A Y or Paragon), and b)
various tutorials as mentioned in the text
RESEARCH: This icon allows visualization of user-generated input

Figure 9. Depiction of the highest occupied, bonding molecular orbital, superimposed
on an electron density surface of the C20 fullerene molecule.
Calculations were performed using the Local Density Approximation.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

3. BALDRIDGE ET AL. Applications of Parallel GAMESS 45

monitors the energetics as a function of the algorithmic iteration, and the other which
monitors the root-mean-square of the minimization procedure with respect to geometry
as a function of the algorithmic iteration. This feature allows one to monitor a long
quantum chemical calculation to make sure it is proceeding correctly and efficiently.

Acknowledgments

Studies of transition metal multiple bonding at Memphis are supported in part
by grants from the Air Force Office of Scientific Research, the Petroleum Research
Fund, and the National Science Foundation (CHE-9314732). The work at Iowa State
and Phillips Laboratory was supported by grants from the Air Force Office of Scientific
Research, the National Science Foundation, and ARPA. Communication of results prior
to publication and helpful discussions with Prof. Parkin (Columbia) are gratefully
acknowledged. Parallel computers at CalTech, the Cornell National Supercomputer
Facility, the San Diego Supercomputer Center, Kirtland Air Force Base, and the Army
High Performance Computer Center at the University of Minnesota were used for
carrying out this research and all are gratefully acknowledged.

Literature Cited

1. Windus, T.L.; Schmidt, M.W.; Gordon, M.S. ACS Symposium Series, preceeding
paper.
2. Matsunaga, N.; Gordon, M.S.; J. Am. Chem. Soc. submitted.
3. Boatz, J.A.; Gordon, M.S. J. Phys. Chem., 1988, 92, 3037.
4. L'Esperance, R.P.; West, A.P.; Van Engen, D.; Pascal, R.A. J. Am. Chem. Soc., 1991,
113, 2672, and references contained therein.
5. Kwochka, W.R.; Damrauer, R.; Schmidt, M.W.; Gordon, M.S. Organomet., in press.

6. Forgacs, G.; Kolonits, M.; Hargittai, I. Struct. Chem. 1990, 1, 245.
7. Shen, Q.; Hilderbrandt, R.L. J. Mol. Struct. 1980, 64, 257.
8. Pestunovich, V.A.; Shterenberg, B.Z.; Lippma, E.T.; Myagi, M.Ya.; Alla, M.A.;
Tandura, S.N.; Baryshok, V.P.; Petukhov, L.P.; Voronkov, M.G. Doklady Phys. Chem.
(English Translation) 1977, 258, 587.
9. Schmidt, M.W.; Windus, T.L.; Gordon, M.S. J. Am. Chem. Soc. submitted
10. Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.G.; Stewart, J.J.P. J. Am. Chem. Soc. 1985,
107, 3902.
11. Stewart, J.J.P. J. Comp. Chem. 1989, 10, 209, 221.
12. (a) Kirkwood, J.G J. Chem. Phys. 1934, 2, 351; (b) Onsager, L. J. Am. Chem. Soc.
1936, 58, 1486; (c) Szefan, M.; Karelson, M.M.; Katritzky, A.R.; Koput, J.; Zerner,
M.C. J. Comput. Chem. 1993, 14, 371.
13. Boys, S.F. in Quantum Science of Atoms, Molecules, and Solids; Lowdin, P.-O., Ed.;
Academic Press, NY, 1966
14. Haaland, A. Angew. Chem. Int. Eng, Ed. 1989, 28, 992.

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

46 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

15. Windus, T.L.; Schmidt, M.W.; Gordon, M.S. J. Am. Chem. Soc. submitted.
16. Bonaccorsi, R.; Palla, P.; Tomasi, J.; J. Am. Chem. Soc. 1984, 106, 1945.
17. Hehre, W.J.; Ditchfield, R.; Pople, J.A. J. Chem. Phys. 1972, 56, 2257.
18. Dunning, T.H., Jr; Hay, P.J. in Methods of Electronic Structure Theory, Schaefer,
H.F. III, Ed. Plenum Press, NY, 1977, 1.
19. Krishnan, R; Pople, J.A. Int. J. Quantum Chem. 1978, 14, 91.
20. Dunning, Jr., T.H. J. Chem. Phys. 1989, 90, 1007.
21. Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett. 1992, 199, 261.
22. Cotton, F. Α.; Wilkinson, G. "Advanced Inorganic Chemistry;" 5th Ed.Wiley: New
York, 1988.
23. Cundari, T. R.; Gordon, M. S. Coord. Chem. Rev. - submitted.
24. Zerner, M. C.; Salahub, D. "The Challenge of d- and f-Electrons;" ACS:Washington,
D. C, 1989.
25. TM=Chalcogen complexes: (a) Parkin, G.; Howard, W. A. J. Am. Chem. Soc. 1994,
116, 606; (b) Parkin, G.; Howard, W. A. J. Organomet. Chem. - in press; (c) Christou,
V.; Arnold, J. J. Am. Chem. Soc. 1992, 114, 6240; (d) Diemann, E.; Mller, A. Coord.
Chem. Rev. 1973, 10, 79. TM=Phosphinidene complexes: (e) Cowley, A. H.; Barron,
A. R. Acc. Chem. Res. 1988, 21, 81; (f) Hitchcock, P. B.; Lappert, M. F.; Leung, W. P.
J. Chem. Soc., Chem. Comm.1987, 1282; (g) Schrock, R. R.; Cummins, C. C.; Davis,
W. M. Angew. Chem., Int. Ed. Engl.1993, 32, 756; (h) Stephan, D. W.; Hou, Z.; Breen,
T. C. Organometallics 1993, 12, 3158. TM=Tetralide complexes: (i) Petz, W. Chem.
Rev. 1986, 86, 1019; (j) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1986, 25, 56.
26. Schmidt, M. W.; Baldridge, Κ. K.; Boatz, J. Α.; Jensen, J. H.; Koseki, S.;
Matsunaga, N.; Gordon, M. S.; Nguyen, Κ. Α.; Su, S. Windus, T. L.; Elbert, S. T.;
Montgomery, J.; Dupuis, M. J. Comp. Chem. 1993, 14, 1347.
27. Smith, M. R.; Matsunaga, P. T.; Andersen, R. A. J. Am. Chem. Soc. 1993, 115,
7049.
28. Baldridge, K.K.; Greenberg, J.P. J. Mol. Graphics, 1994, submitted.
29. Lorensen, W.E. Computer Graphics, 1987, 21, 163.
30. Borchardt, Α.; Baldridge, K.K., Fuçhicello, Α.; Kilway, K.; Siegel, J.S. J. Am.
Chem. Soc. 1992, 114, 1921.
31. VernonClark, R.; Battersby, T.; Gantzel, P.; Chadha, R.; Baldridge, K.K.; Siegel,
J.S. J. Am. Chem. Soc., 1994, submitted.
32. Kawai, R. Unpublished software employing the Kohn-Sham density functional
theory: Hohenberg, P.; Kohn, W. Phys. Rev. Β 1964, 136, 864; Kohn, W.; Sham, L.J.
Phys. Rev. A 1965, 140, 1133.
33. Taylor, P.R.; Bylaska, E.; Weare, J.H.; Kawai, R. Phys. Rev. Lett., 1994, submitted.
RECEIVED January 10, 1995

D
ow

nl
oa

de
d

by
 P

E
N

N
SY

L
V

A
N

IA
 S

T
A

T
E

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 4

Object-Oriented Implementation
of Parallel Ab Initio Programs

C. L. Janssen, Ε. T. Seidl, and M. E. Colvin

Sandia National Laboratories, Mail Stop 9214, Livermore, CA 94551

Efficient implementation of ab initio methods on advanced computer ar
chitectures requires rethinking the algorithms and coding practices cur
rently in use. This creates an opportunity to experiment with new software
development methodologies while building the next generation of codes.
We have chosen an object oriented approach using the C++ programming
language. Our goal is a production-quality set of computational chem
istry programs that run efficiently on scalar, distributed, shared memory,
and massively parallel computers. We will describe our massively paral
lel quantum chemistry program with emphasis on understanding how well
the object oriented approach facilitates the development of scientific soft
ware. We will also examine the effects that our design choice has had on
efficiency, code reuse, and complexity.

Rapid advances in computer hardware and software technology have made the im
plementation of efficient ab initio quantum chemistry programs a continuing effort.
Since these methods are so computationally intensive, programmers must redesign code
to take maximal advantage of the currently available computer hardware. For example,
programs to compute the two electron integrals were originally constrained to fit into a
few kilobytes of memory. They have now been replaced by much larger programs that
take advantage of vectorized computer architectures. This constant algorithmic evolu
tion has not been matched by changes in software development methods. After early
machine language versions of quantum chemistry programs, the community quickly
settled on the FORTRAN programming language, which has seen few changes in the
last two decades.

There are several reasons for the slow change of implementation language; one of
the most important has been that, until recently, compilers of other languages could not
generate executable programs as efficient as the best FORTRAN compilers. Although

0097-6156/95/0592-0047$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

48 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

high performance compilers are available in a number of new languages suitable for
scientific computing, the quantum chemistry community continues to be reluctant to
use them. This continued reluctance is due in part to the time required to learn new
computer languages and, in our opinion, an underestimation of the value of modem pro
gramming methods. In particular, object oriented programming methods and languages
provide powerful ways of organizing programs that are particularly useful for dealing
with complex quantum chemistry programs, without sacrificing efficiency. Moreover,
these new computer languages will help reduce the burden of creating programs that
are efficient on diverse computer architectures ranging from stand alone workstations
to massively parallel supercomputers.

The Object Oriented Approach

One of the main advantages of object oriented programming is that it provides mech
anisms for hiding the complexity of large software systems. There are several ways in
which the object oriented approach helps in this regard, but we will focus on the ways
in which the object oriented approach eases reuse of code, improves portability, and
produces more reliable programs. These benefits are provided by object oriented lan
guages through two primary mechanisms: encapsulation and abstraction (and concomi
tant specialization).

Encapsulation. Encapsulation is the grouping of related data and the operations that
manipulate these data together into a new data type, sometimes called a "class". The
concept of encapsulation is familiar to many users of traditional programming lan
guages, such as C, that allow the programmer to define new data structures. Object
oriented languages take this one step further by giving the programmer of this new data
type control over how the data that are encapsulated within the new type can be accessed
and manipulated. The programmer decides whether or not individual pieces of data that
compose the new type will be accessible to other users of the class. Additionally, the
programmer writes subroutines that are considered a part of the new data type and that
have privileged access to all of the component data of that type.

The component data and functions belonging to a data type are known as its "mem
bers". Those members accessible to all users of the class are collectively referred to as
the interface. The key to successful object oriented design is the appropriate choice of
the interface, because as long as it is not necessary to change the interface to adapt the
data type to a new situation, it is not necessary for any other users to be aware of the
internal workings of the the data type.

Just as an integer data type in a conventional programming language has specific
instantiations while a program is running, for example, the integer variable n b a s i s
may have the value 731, an object oriented class will have instantiations in a running
program. These instantiations are the "objects" in object oriented programming.

There is an important difference between member functions and ordinary functions.
Ordinary functions typically operate on external data that are passed into the function.
Member functions are associated with a specific object and usually act to modify or ex
tract data from this object. For example, a matrix object might have a matrix inversion

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. J A N S S E N E T A L . Parallel Ab Initio Programs 49

member function which would calculate and return the inverse of the matrix held by
the object.

For a more detailed example, let us consider how a simplified self-consistent field
(SCF) wavefunction might be encapsulated in the SCFWAVEFUNCTION data type (see
Table I). The members of SCFWAVEFUNCTION are separated into two categories. The

Table I: The SCFWAVEFUNCTION data type.

Private Member Data:
Type Name Description
M O L E C U L E m o l e c u l e The nuclei and their positions.
R E A L Ε The energy.
MATRIX c o e f The molecular orbital coefficients.
BOOLEAN c u r r e n t True if Ε and c o e f are current.

Public Member Functions:
Type Name Description
R E A L ene rgy() Returns the energy of the molecule.
MATRIX c o e f f i c i e n t s () Returns a copy of coef .

— geom (MATRIX) Sets the geometry of m o l e c u l e to the
given MATRIX object.

"private" member data are those data that users of SCFWAVEFUNCTION objects can
not access directly. They are considered internal to SCFWAVEFUNCTION and they can
only be accessed by the designer of this class within the code for the member functions.
Users of this class have access to the public member functions only. That is, they can
only retrieve the energy or SCF coefficients, or change the molecular geometry.

This greatly improves the integrity of the code, since it defines the only mecha
nisms by which the user can modify the object. If the user wants to change the geome
try, then this can only be done through the geom (MATRIX) member. If the geometry
is changed, the member c u r r e n t would be set to false. The next time ene rgy ()
is called, it would check c u r r e n t , find that it was false, recompute the energy, and
finally return the answer. Subsequent calls to ene rgy () would find that the stored
energy was current and would return the energy without duplicating the computation.
Now it is no longer up to the user to remember to update the energy when the geometry
is changed. This is guaranteed by the SCFWAVEFUNCTION class itself.

Abstraction. It is frequently useful to design generic data types for which a variety
of specific implementations are desired. (These are called abstract data types.) While
these data types specify a complete interface, implementations of some of their member
functions are deferred. New data types can inherit the interface of an abstract data type
and implement the deferred member functions. (The new type is called a specialization
of the abstract data type.) With this approach, two desirable features are obtained. First,
a foundation is provided on which new data types can be based. This lets the new data
types reuse the pieces of code which could be implemented for the more general data

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

50 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

type. Furthermore, abstraction allows a piece of code to be written that uses only the
interface of the abstract data type. This means that any data type which has that abstract
data type as its foundation can be given to that piece of code.

For example, in a parallel quantum chemistry program the data type MATRIX may
exist in several different forms. It could be distributed across or replicated on the nodes
of the system or, on some architectures, it could reside in shared memory. Although the
underlying storage scheme for MATRIX is unspecified, the concept of a matrix is quite
well defined. It should support matrix multiplication, diagonalization, and all of the
other operations associated with matrices. Any user that used only these general ma
trix operations and was not concerned about the internal details of the matrix, such as
whether or not it was distributed, could write code solely in terms of MATRIX which
would not have to be reimplemented or even recompiled for each of the specialty ma
trices.

Going back to the example of SCFWAVEFUNCTION , we find that abstraction could
be useful here as well. Table Π shows the members of the WÀVEFUNCTION class. (Note

Table Π: The WAVEFUNCTION data type.

Protected Member Data:
Type Name Description
M O L E C U L E m o l e c u l e The nuclei and their positions.
R E A L
BOOLEAN

Ε

c u r r e n t
The energy.
True if Ε and c o e f are current.

Protected Member Functions:
Type Name Description

upda te () Recomputes the energy. This function is
deferred, because WAVEFUNCTION doesn't
know how to compute the energy.

Public Member Functions:
Type Name Description
R E A L ene rgy () Returns the energy of the molecule.

geom (MATRIX) Set the geometry of m o l e c u l e to the given
MATRIX object.

that we have introduced a new access type in addition to "private" and "public". "Pro
tected" members can be used by classes which inherit from the class with protected
members, but they are not accessible to other users of the class.)

Specialization is the process of providing an implementation for an abstract data
type. This is done by defining a data type that inherits the properties of an abstract data
type and implements all of the member functions deferred by the abstract data type.
Table ΙΠ shows the SCF specialization of the WAVEFUNCTION data type. Since S C F
inherits the members of its base class, WAVEFUNCTION, it ends up with the same in
terface as the original SCFWAVEFUNCTION data type. Only now, part of its code has
already been implemented by its base class. Furthermore, any code which must com-

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. JANSSENETAL. Parallel Ab Initio Programs

Table ΙΠ: The SCF data type.

51

Private Member Data:
Type Name Description
MATRIX c o e f The molecular orbital coefficients.
Private Member Functions:
Type Name Description
— upda te () Recomputes the energy.
Public Member Functions:
Type Name Description
MATRIX c o e f f i c i e n t s () Return a copy of coef .

pute a molecular energy can be passed any WAVEFUNCTION class whether it be an SCF
or an MP2 or any other class based on WAVEFUNCTION.

The relationships between the classes are shown in Figure 1. This shows classes in

Molecule

ι m o l e c u l e

Figure 1: The SCF class hierarchy.

boxes and inheritance relationships as solid lines pointing from the specialized class to
the abstract base class. The dashed lines represent containment, that is, data member
ship, and point to the contained data type. These lines are labeled with the name of the
member.

We can benefit from applying the process of abstraction and specialization at a
higher level. Suppose we wanted to optimize the energy associated with our wavefunc
tion with respect to changes in the nuclear coordinates. The optimization package does
not need to know whether or not we are computing the energy of a molecule or that
the coordinates are nuclear coordinates. It only needs a function which, given a set of
parameters, can compute the function's value and possibly its gradient. By basing the
WAVEFUNCTION class on a FUNCTION class, we can make the optimization routines
more general and reusable.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

52 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Object Oriented Languages

Object oriented programming techniques can be applied in nearly any language (7), but
their use is greatly facilitated by the use of object oriented programming languages, and
we will therefore restrict our attention to the use of object oriented languages, such as
C++ (2).

However, since performance is critical, we compared the efficiency of C++ with
other programming languages traditionally used for scientific applications. We imple
mented a loop-unrolled, double precision, matrix multiply routine in FORTRAN, C,
and C++. We compiled these test programs on an SGI Onyx workstation (150 Mhz
R4400 CPU, 26 MFLOPS 100 χ 100 Linpack (3)) using the SGI FORTRAN, C, and
C++ compilers. As shown in Table IV, all three produced nearly equal performance for
100 χ 100 matrix multiplies—in the range 36-40 MFLOPS. Needless to say, carelessly
using member functions can lead to dramatic reductions in the performance of C++ (as
could overzealous use of function subroutines in FORTRAN). To demonstrate this, the
final row in the table is for a C++ matrix multiply in which a member function is in
voked to access each matrix element, which reduces the performance to 3 MFLOPS.
Clearly, excessive use of member function calls must be avoided and this is done in
object oriented languages by carefully choosing the interface. In this case, the matrix
interface has a member that is able to efficiently multiply two matrices.

Table IV: Speed of a matrix multiply written in several languages.

Language Rate (MFLOPS)
FORTRAN 36-4

C 39-7
C++ 39-5
c++a 3-1

a A function call was used for each element access.

The object oriented languages can be broadly grouped into weakly and strongly
typed languages. The strongly typed languages are similar to FORTRAN and C, in
which each datum is associated with a particular type such as i n t e g e r or f l o a t ,
while weakly typed languages do not permit types to be associated with symbols. Typ
ically, compilers for strongly typed languages have the advantage that they can ensure
that only appropriate operations are performed on a given datum and they can more
easily optimize the generated code. On the other hand weakly typed languages are
more flexible. For quantum chemistry, which places a premium on execution speed,
the strongly typed languages are the logical choice, at least for the compute intensive
kernels. For this reason we will focus exclusively on the strongly typed languages.

Several strongly typed object oriented languages exist, of which the most widely
used is C++. Commercial as well as freely distributed C++ compilers are available for
nearly all architectures, including massively parallel machines. This is one of the main

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. J A N S S E N E T A L . Parallel Ab Initio Programs 53

reasons we have chosen C++ for the implementation of our massively parallel quan
tum chemistry program. Nevertheless C++ is not a perfect object oriented language;
it provides only the basic machinery that permits object orientation. Other languages
typically layer upon this foundation a set of commonly needed data types, such as sim
ple arrays, sets, strings, and even complex data types such as those needed to build a
graphical user interface to an application. Furthermore, it is common for object ori
ented languages to provide built-in facilities such as a mechanism to automatically re
claim memory as soon as it is no longer needed. Also, methods that retrieve "metain-
formation" about a data type, such as its type name and relationships to other types, are
provided by some languages. Another important facility that is frequently provided is
persistence, that is, the ability to save an object to a disk or other device so that it can
be restored by another program or perhaps moved to another processor. None of these
data types or facilities are provided by C++. It does, however, provide the framework
for the programmer to build these data types and facilities, but this task must be under
taken by the applications developer. This lack of basic support by C++ can seriously
jeopardize code reuse since individual developers may use different approaches to pro
vide the functionality missing in C++. (Consult the appendix for a discussion of how
we have implemented some of the facilities missing in C++.)

These drawbacks, as well as other, more technical, problems with C++ raise the
question of whether it is worthwhile learning a complex new language. However, in
our case, implementing quantum chemistry codes on massively parallel machines and
other parallel architectures requires a substantial rewrite of the codes and the object ori
ented approach is a particularly sensible way to deal with the complexity of developing
software that is efficient on several different computer architectures. Furthermore, al
though C++ currently adds unnecessary complexity to object oriented programming,
this situation is likely to be ameliorated in the future. New languages will come along,
or other languages will become better accepted, or C++ itself will evolve to remedy its
problems. Whatever language we program in ten years from now, it will very likely
have object oriented features and will support the same abstractions we are developing
now. Ultimately, it is the proper choice of abstractions, and not the choice of language,
that is the key to successful object oriented design.

The primary document for the C++ standard (2) can be consulted for more details.

Applications to Ab Initio Chemistry

We are in the process of applying object oriented design principles to our massively par
allel quantum chemistry (MPQC) codes which can perform low order ab initio compu
tations on medium sized biochemicals and portions of macromolecules with up to hun
dreds of atoms. MPQC can currently be used to compute SCF energies and gradients as
well as second order M0ller Plesset (ΜΡ2) (4) and open-shell (ΟΡΤ2) (5) perturbation
theory energies. Efficient internal coordinate optimization methods allow for the rapid
determination of molecular geometries at the SCF level of theory. Since cutoffs are used
to drastically reduce the number of integrals needed for the large systems we study, we
have taken care to parallelize all of the 0(Njjasis) steps (matrix multiplication, diago
nalization, orthogonalization, etc.) to prevent these steps from becoming bottlenecks.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

54 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Furthermore, Njfasis may be large compared to the amount of memory available on each
processor, so we have the ability to distribute matrices among the nodes as described
in (6).

MPQC running on an Intel Paragon is being routinely used for chemical studies. Ta
ble V illustrates typical calculations and timings for a single SCF gradient calculation.

Table V: Timings for SCF gradient calculations running on an Intel Paragon.

Molecule Point Group Nbasis 1 »processor Time (hours)
Methyl-a-cellobiose C i 480 120 2-83
Methyl-a-cellobiose c, 480 240 1-50
Methyl-a-cellobiose Ci 480 480 0-83
Porphyrin 5 4 420 256 0-34
Acetylaminofluorene C i 294 256 0-55
Phthalocyanine D2h 970 512 1-05

Object Oriented Design of M P Q C . A simplified view of a portion of the MPQC inher
itance hierarchy is shown in Figure 2. This is a more realistic reworking of the SCF hi

erarchy illustrated in Figure 1. Features include the use of the FUNCTION abstract class
which maps a set of coordinates to the function's value (and possibly its gradient). A
separate set of optimization classes can make use of any specialization of FUNCTION.
The MOLECULARENERGY class is a specialization of FUNCTION (it happens to be an

Figure 2: The MPQC inheritance hierarchy.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. J A N S S E N E T A L . Parallel Ab Initio Programs 55

abstract specialization) which interprets FUNCTION'S coordinates as the specification
of a nuclear geometry and FUNCTION'S value as the energy of the molecule. Since there
are many ways to specify a geometry and the actual computation of the energy is usu
ally done in terms of Cartesian coordinates, M O L E C U L A R E N E R G Y contains a class,
M O L E C U L A R C O O R D I N A T E S , which is used to convert between the coordinates that
are needed by F U N C T I O N and the Cartesian coordinates. Note that at this level, the
M O L E C U L A R E N E R G Y class is completely generic to any method of calculating the
molecular energies. For the case of ab initio methods, it is useful to create special
ization of the M O L E C U L A R E N E R G Y class, W A V E F U N C T I O N , which adds members to
compute electron densities and wavefunction values at points in space. Finally, W A V E -

F U N C T I O N is specialized into a fully implemented class for each ab initio method such
as SCF or MP2. The SCF specialization of W A V E F U N C T I O N contains objects such as
the SCF coefficients (which are of type M A T R I X) and an object to form the Fock matrix
(which is of type F O R M F) . The W A V E F U N C T I O N class has also been specialized to the
MP2 class in Figure 2 which includes an SCF object to store the reference wavefunc
tion.

An SCF object can be used to compute an energy or gradient. Since the SCF class
is a specialization (via W A V E F U N C T I O N) of the F U N C T I O N class, it is guaranteed to be
compatible with the O P T I M I Z E class, shown in Figure 3, which can be used to optimize
the SCF geometry. In practice, we use the Q U A S I N E W T O N specialization of O P T I M I Z E

which would contain an SCF specialization of F U N C T I O N .

Nothing specific to parallelism appears in Figures 2 and 3. This is precisely the goal
of the object oriented approach; we want to hide the complexity of parallelism as much
as possible. The core types of MPQC provide an adequate foundation for all computer
architectures. To understand how parallelism fits into this scheme, we will look at the
M A T R I X , F O R M F , and ΜΡ2 classes in more detail.

The M A T R I X Class. Matrix operations are among the more common tasks of com
putational significance that a quantum chemistry application must perform. Thus it is
desirable to develop highly optimized matrix classes for each computer architecture. In
the object oriented approach, this is accomplished by defining an abstract class and a
specialization of this class for each computer architecture, as shown in Figure 4. Unfor-

Figure 3: The O P T I M I Z E inheritance hierarchy.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

56 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

. Matrix

(shmMatrix) / \ (pistMatrix)

(LocalMatrix) (ReplicatedMatrix)

Figure 4: The MATRIX inheritance hierarchy.

tunately, the existing object oriented matrix libraries are optimized for particular com
puter architectures. Our goal is to design a set of matrix operations for the abstract MA
TRIX class that is very general and will satisfy our needs for all architectures. We plan
to support simple matrices that provide efficient matrix computations for uniprocessors,
shared memory machines, clusters of processors with enough memory to store all ma
trices connected by a relatively slow network (workstations on an LAN), clusters of
processors with enough memory to store all matrices and a fast interconnect network
(a massively parallel machine such as the Intel Paragon), and clusters of machines that
do not have enough memory to hold entire matrices (only a fast interconnect network
would work well in this case).

The general operations mentioned above define the interface of the abstract MA
TRIX class, a portion of which is outlined in Table VI. This table omits the standard
linear algebra routines, such a matrix inversion, multiply, etc. that are also part of the

Table VI: A portion of the MATRIX interface.

Public Member Functions:
Type Name Description
M A T R I X copy() Return a copy of this matrix.
— a s s i g n (R E A L) Assign all elements to the

given number.
— a s s i g n (M A T R I X) Assign to this matrix the

given matrix.
— accum (M A T R I X) Add to this matrix the given

matrix.
M A T R I X sum (M A T R I X) Return the sum of this and

another matrix.
— s e t (I N T E G E R , I N T E G E R , R E A L) Set an element of this matrix.
R E A L ge t (I N T E G E R , I N T E G E R) Return an element of this

matrix.
— element_op (E L E M E N T O P) Perform the given operation

on all elements of this matrix.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. JANSSEN ET AL. Parallel Ab Initio Programs 57

interface as well as other utility methods that implement automated memory manage
ment, persistence, and dynamic typing.

Although the M A T R I X class is abstract, it can implement some of these members
without limiting its generality. For example, the sum () member is implemented in
M A T R I X using the copy () and accum () members. The implementations of copy ()
and accum () are deferred to the specializations of M A T R I X , since they require spe
cific information about how the matrix elements are stored. An alternate choice would
have been to implement accum () in terms of and sum () and a s s i g n () ; however,
this would result in the unnecessary creation of a temporary matrix. (Such considera
tions of storage and performance requirements are essential to developing classes for
high performance applications.) Ideally, object oriented matrix classes should permit
use of convenient member functions, such as sum (), while allowing access to more
efficient members, such as accum ().

A more detailed example of some of the trade-offs between efficiency and generality
arises when deciding how to provide the user access to the elements of the M A T R I X ob
jects. Since some specializations of M A T R I X distribute elements among the processors,
individual access to each element could be slow. Hence, the M A T R I X member functions
ge t () and s e t () listed in Table VI will not alone be adequate. (We have included
these functions since there are many cases where efficiency is not important and omis
sion of g e t and s e t would make the matrix package less flexible.) An alternative
strategy to retrieving the individual matrix elements before an operation is to distribute
the operation request to wherever the matrix elements are located. To this end another
method, e lement .op (), has been added to the M A T R I X class. The e lement .op ()
member takes as an argument an E L E M E N T O P object, which is capable of processing
each of the elements in the matrix in an efficient manner.

The use of the element_op () member is illustrated in Figures 5 and 6 for the
computation of the overlap matrix on three processors (one of which is the "host" that
manages the parallel computation). In this example, the overlap matrix, S, is of type

fs.element_op(op)Ί

^Node \ j Node 2

Figure 5: The first step in the overlap matrix computation.

D I S T R I B U T E D M A T R I X and a piece of it, S i , resides on node 1 and the rest, S 2 , is stored
on node 2. In the first step, shown in Figure 5, the host process creates the op object.
The op object is of type O V E R L A P which is a specialization of E L E M E N T O P . This op

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

58 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

(Host)

Ξ
op.procèss(

Node 1

op.process(

Node 2

Figure 6: The second step in the overlap matrix computation.

is then given as an argument to the element_op () member. In the next step, shown in
Figure 6, the op is broadcast to the nodes, using the persistence mechanism to duplicate
this object. Upon receiving op, each node passes its locally held pieces of the overlap
matrix to op, which fills in the values. The matrix classes allow the granularity of the
pieces of the matrices to be chosen such that they make the procedure efficient, which
in this case means that all basis functions in a shell must be grouped together.

The F O R M F Class. Although most quantum chemical algorithms are formulated in
terms of matrix equations, more specialized operations are required for their efficient
computation, especially on multiprocessor computers. One example is the parallelized
Fock matrix formation, where the two electron integrals and perhaps the F, H , and Ρ
matrices are distributed.

η

Fpq = Hcore + Σ Prs(2{pq\rs) - {pr\qs))
rs

This equation can be implemented in two ways; abstract operations could be developed
for the M A T R I X class that can do this sort of contraction for the general case. A more
efficient alternative is a class written to implement the Fock matrix formation, F O R M F ,

which is encapsulated within the SCF class (Figure 2). This class has specializations
optimized for particular architectures, as shown in Figure 7. The latter approach is sim
pler and is currently being used in MPQC. Since the SCF object must first determine
whether a local or distributed M A T R I X is actually being used for the density, some
mechanism is needed to identify the matrix specialization (which may not be known
until run time). Our dynamic typing system makes this possible with C++ (see the ap
pendix); other object oriented languages support this directly. The appropriate special
ization of F O R M F is created which knows the specific form of the matrix being used
and thus it can access the data in the most efficient way. This approach is an example
where a localized breakdown of abstraction is required to yield optimal efficiency from
the machine.

The M P 2 Class. To achieve the maximum efficiency, we must accept the fact that cer
tain wavefunctions may have very different implementations for different architectures.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

4. JANSSENETM* Parallel Ab Initio Programs 59

Figure 7: The F O R M F inheritance hierarchy.

This is the case with our MP2 routines, because the entire algorithm has been reorga
nized to minimize memory use and communications. In this case the inheritance hierar
chy includes a completely separate specialization of W A V E F U N C T I O N to support MP2
on parallel architectures. (Figure 8.)

Conclusions

The object oriented approach can be used to manage the complexity of large software
systems. Object oriented languages allow programmers to encapsulate, abstract, and
specialize data types. These facilities allow code to be written that is easier to reuse and
more general. When it is not possible to obtain satisfactory performance out of general
code, object oriented programming methodology allows programmers to isolate neces
sary machine specific code as much as possible from the rest of the application. These
features make object oriented programming a particularly good way to implement com
plex parallel quantum chemistry programs.

A continuing hindrance to the field of ab initio quantum chemistry is that nearly all
of the software infrastructure is reimplemented in each new quantum chemistry project.
As a result, there are fundamental incompatibilities in the quantum chemistry software
developed by different research groups. A central goal of this research is to determine
the feasibility of a set of object oriented building blocks for quantum chemical soft
ware. If such object libraries can be made sufficiently versatile and efficient on a wide
range of computer architectures, they should point the way towards a different future for
quantum chemical methods development. New theoretical methods could be rapidly
assembled from available classes and new developers could fully take advantage of an
existing legacy of quantum chemical software.

Figure 8: The MP2 inheritance hierarchy.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

60 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Appendix

As previously stated, the M P Q C program is implemented in C++, which omits sev
eral useful programming features that are common in other object oriented program
ming languages. Fortunately, C++ is flexible enough to allow inclusion of most of these
features with a modest amount of additional programming. Some of the missing fea
tures that we have implemented for use in M P Q C are automated memory management,
dynamic typing, and persistence. These utility classes are available from the authors
(email janssen@netcom.com).

Memory Management C++ was designed as a superset of its predecessor, C, and uses
C's memory management mechanism. This involves explicit function calls to allocate
and release memory. It is frequently the case that a single piece of memory is shared
by many objects, to avoid allocating extra storage and unnecessarily copying the data.
However, it then becomes difficult to determine when the memory is no longer in use
and should be released to the system so it can be reused. Releasing the memory too soon
typically results in difficult-to-find errors in the program; not releasing memory at all
wastes system resources. Several other programming languages use "garbage collec
tion" techniques to reclaim unused memory without programmer intervention.

Our approach to memory management in C++ allows the programmer to choose be
tween the standard C-style memory allocation techniques and a "reference counting"
mechanism for each object created. In the latter method an integer is stored with the
object that keeps track of how many references that there are to an object. This count is
maintained by a "smart pointer" to the object which is implemented as a class that en
capsulates a simple C-style pointer to the object. The smart pointer can be used just like
a simple pointer. When an operation that eliminates a reference to an object is executed,
the smart pointer will detect this and decrement the reference count. When the count
becomes zero, the object is released. When a new reference to an object is created by a
smart pointer the reference count is incremented. Smart pointers can be used in place
of simple pointers without significant performance impact for big objects such as ma
trices. For small data, such as the elements of a matrix, the standard C-style pointers
are used.

Dynamic Typing. Consider the accum (M A T R I X) member of the M A T R I X class (Ta
ble VI). This is a deferred member function so it is implemented in a specialization of
M A T R I X . If the accum (M A T R I X) member of an D I S T M A T R I X (Figure 4) object is
called, then it will be passed an argument of type M A T R I X . This means it could only use
the functions provided in the interface of M A T R I X to perform the accumulation. This
is not very efficient, but to improve the performance the accum (MA TR IX) member
function of D I S T M A T R I X would need to know which particular M A T R I X specializa
tion it has been passed.

Dynamic typing makes it possible to determine the specialized type of an object for
which only the abstract type is known. Thus, the accum (M A T R I X) member function
could find out if the argument was actually a D I S T M A T R I X object. It could then do the
accumulation in the most efficient way possible.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

mailto:janssen@netcom.com

4. JANSSEN ET AL. Parallel Ab Initio Programs 61

Persistence. Persistence is broadly interpreted to mean capabilities ranging from sav
ing objects to a disk so that they can be reconstructed in the future to sending objects
across a network so they can reside on a different node. Both capabilities are very useful
in a parallel quantum chemistry code.

We have implemented a persistence mechanism that is fully integrated with the ob
ject oriented approach. A l l classes with persistence inherit from the S A V A B L E S T A T E

class which provides a deferred member function, save_s t a t e (S T A T E O U T), that is
called with a argument that is of type S T A T E O U T . Each specialization of S A V A B L E -

S T A T E implements s a v e . s t a t e (S T A T E O U T) SO that it gives to the S T A T E O U T ob
ject each piece of data that is needed to reconstruct the object being saved. Different
specializations of S T A T E O U T object are used to dispose of the data in different ways.
For example, the S T A T E O U T B I N F I L E specialization writes each piece of data to a bi
nary file in an architecture independent format.

Reconstruction of the object proceeds by giving an object's constructor (a special
member function that initializes a new object) an object of type S T A T E I N . For each
S T A T E O U T there is a corresponding S T A T E I N specialization that can restore data saved
by the S T A T E O U T specialization. Because only the abstract type of member objects
might be known, it is necessary to store the specialization of the object with the object so
that the correct specialization can be restored. The dynamic typing mechanism provides
this capacity. After the restoration is complete, we have an object that has exactly the
same properties as the object that existed at the time its save .s t a t e () member was
called.

Acknowledgments

This work was carried out at Sandia National Laboratories under contract from the U.S.
Department of Energy and supported by its Division of Basic Energy Sciences. Paral
lel computing resources were obtained in part from the Massively Parallel Computing
Research Laboratory at Sandia National Laboratories.

Literature Cited

1. Holub, A. I. C + C++. McGraw Hill, 1992.
2. Ellis, M. A.; Stroustrup Β. The Annotated C++ Reference Manual. Addison-Wesley,

1990.
3. Dongarra, J.J. Performance of Various Computers Using Standard Linear Equations

Software. Tech. Report CS-89-85, Oak Ridge National Laboratory, Oak Ridge, TN,
1994.

4. Møller, C.; Plesset M. S. Phys. Rev. 1934, 46, p 618.
5. Murray, C.; Davidson, E. R. Chem. Phys. Letters 1991, 187, pp 451-454.
6. Colvin, M. E.; Janssen, C. L.; Whiteside R. Α.; Tong C. H. Theor. Chim. Acta 1993,

84, pp 301-314.

RECEIVED January 19, 1995

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 5

Ab Initio Quantum Chemistry
on a Workstation Cluster

David P. Turner1, Gary W. Trucks2, and Michael J. Frisch2

1Scientific Computing Associates, 265 Church Street,
New Haven, CT 06510-7010

2Lorentzian, Inc., 140 Washington Avenue, North Haven, CT 06473

Recent advances in workstation performance and parallel
programming environments have produced a new computing option
for ab initio electronic structure theory calculations: parallel
processing on clusters of workstations. This model, if successfully
applied to the most commonly-used algorithms, promises to provide a
larger number of researchers quicker time to solution, the ability to
study larger chemical systems, and the availability of vast amounts of
cost-effective computing resources. In this chapter, we will describe
our efforts parallelizing the Hartree-Fock direct SCF energy, gradient,
and second derivative evaluations in the widely-used Gaussian ab
initio code system, using the Linda parallel programming model. We
will address the relevant issues of the cluster programming model,
and will present our results from a network of six high- performance
Unix workstations. We will also briefly discuss our plans for
extending the parallel performance to a larger number of processes.

Numerical computation is an important component of modern quantum chemistry,
both in private industry as well as in academic research. Ab initio electronic
structure theory has proven to be a valuable tool for determining structures,
thermochemistry, characterizing spectra, predicting reaction mechanisms and rates,
and determining parameters for more approximate methods such as molecular
mechanics. In particular, the Gaussian series of programs1 has been established as
the most widely used ab initio package. This is due to its constantiy improving
performance and its open software architecture, which allows the newest models to
be easily incorporated.

In spite of recent dramatic gains in Gaussian performance, many researchers are
still limited both in the size of the molecular systems they can study and in the extent
of analysis possible. The typical researcher may have two computing options
available, each with its own limitations. The first option is the traditional
supercomputing center. While memory capacity and CPU performance are often
quite dramatic, most centers are heavily subscribed. In practice, it may be
impossible to get the necessary resource allocations to thoroughly study the chemical
system of interest. The second option is the researcher's own workstation. Here the

0097-6156/95/0592-0062$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 63

situation is reversed: C P U performance and memory capacity are much more
modest, but their availability is essentially unlimited. Typically, the researcher's
workstation is but one of many located on a local area network. The primary
objective of this work has been to investigate the creation of a third option, a parallel
version of Gaussian that can run on a network of workstations. This objective was
constrained by the desire to leave intact the underlying structure (and portability) of
Gaussian.

The first step of any code optimization effort, including parallelization, is to
identify those operations that dominate the quantity being optimized, whether it is
C P U time, memory usage, or I/O 2 . For Hartree-Fock theory applied to large
chemical systems, the limiting calculation in direct self-consistent field (SCF)
methods is the generation and consumption of two-electron repulsion integrals3.
Gaussian implements this using the Prism algorithm4 , 5. Although this is the fastest
known algorithm for two-electron integral evaluation, it can still comprise
approximately 90% of the required CPU time for a typical single-point energy or
gradient calculation. It is therefore an obvious candidate for parallelization.
Another area that can use enormous amounts of CPU time is the evaluation of
Hartree-Fock analytic second derivatives. In Gaussian, a large part of this work is
accomplished by a package called ChewER, which implements the Head-Gordon-
Pople (HGP) algorithm for Raffenetti integral combinations6. The primary output of
both Prism and ChewER is a set of Fock matrices. Each element of each matrix is
the sum of many two-electron integral terms. This summation can be used as the
basis of work partitioning among multiple processes.

Just as Gaussian is a leader in the field of ab initio computations, Linda is a
leader in parallel programming. It has achieved this position through its simple
programming model, portability, debugging tools, and of course, performance. It
provides a framework for developing and debugging a parallel application on a
single processor, and then using the same source code to generate a version suitable
for a multiprocessor (shared- or distributed-memory) or a network of workstations.
For these reasons, Linda was chosen as the parallel programming tool for this work.

There have been several attempts to parallelize electronic structure codes in the
past, some of which have yielded good parallel speedup 7 1 2. However, these efforts
have primarily started from academic programs and lack commercial support for end
users. Many of these codes incorporate a limited range of models and do not
necessarily use the most recent and effective algorithms. The work reported herein
differs from these previous works in its emphasis on using two state-of-the-art
commercial software packages, Gaussian and Network Linda, and in its focus on the
actual results an end-user would receive from such a combination. For each test case
that we benchmarked, we have presented not only speedups for the computational
kernels that were parallelized, but also for the entire Gaussian calculation, which are
much more relevant to a typical end-user.

The aim of this research was to exploit parallelism on small, homogeneous
networks. Because of this, it was decided to base the Linda version on the existing
shared-memory multiprocessor version of Gaussian. As described below, this
approach results in coarse-grain parallelism, with a large initial communication cost,
no communication during parallel execution, and a smaller communication
requirement following the parallel section. The large granularity suggested that a
network implementation was practical. The work allocation of this method provides
an equal amount of work for all processes, providing good load balancing for
identical processors.

In the following sections, we provide technical background, describe the parallel
implementation, and present and discuss performance results. Additionally, we

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

64 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

identify areas for possible future parallelization. Overall, our work clearly
establishes the feasibility of developing a network-parallel version of Gaussian.

Background

Gaussian Architecture. The Unix version of Gaussian is actually a sequence of
executable programs called links. The first link (LO) is responsible for reading the
user's input file and determining the sequence of links necessary to produce the
desired results. Each link is responsible for initiating the next link in the sequence,
using the exec () system call.

There are over a dozen links which can possibly invoke Prism and/or ChewER.
For this project, the following links were chosen for their frequent and CPU-
intensive use of these two algorithms:
• L502 closed and open shell SCF solution;
• L703 two-electron integral first or second derivative evaluation;

L1002 Coupled-Perturbed Hartree-Fock (CPHF) solution and
contribution of coefficient derivatives to Hartree-Fock second
derivatives; and

• L1110 two-electron contribution to Fock matrix derivatives with
respect to nuclear coordinates.

Of the remaining links that use these two packages for integral evaluation, most
consume little CPU time, or are infrequently used. A few of them were successfully
parallelized to test the robustness of the method, but no performance measurements
were made for them.

Shared-Memory Gaussian. The most recent public release of Gaussian (Gaussian
92) includes versions of Prism and ChewER intended for shared-memory
multiprocessors13. Most of the logic which implements this parallelism is located in
two setup routines called PrsmSu and CherSu. These routines are responsible for
process creation and synchronization (only required at termination).

Process creation is implemented using the Unix f o r k () system call. This
gives each child process private copies of all local variables, COMMON blocks, and
scalar arguments. The array arguments reside in shared memory, and each child
process gets free access to all the arrays. For input arrays, no special care is needed.
For arrays that are modified (either scratch arrays or output arrays), the parent
allocates space from its shared-memory workspace for each of its children, and
initializes the arrays appropriately. It should also be noted that the parent process
calls Prism (or ChewER) after creating the child processes; that is, the parent also
functions as a worker, participating fully in computing the solution.

Work allocation is done in parallel but is completely deterministic. In the Prism
routine P i c k s 4 , each worker determines which batch of shell quartets it will
evaluate. In the current implementation, this is a completely redundant and non-
trivial computation, comprising from 3% to 4% of the overall Prism execution time.
A similar approach is taken by the ChewER routine ChunkR. The effect of this
redundant work is clearly seen in the results presented later.

Using the shell quartets selected by PickS4 (or ChunkR), each worker
computes a partial sum for every element of every Fock output matrix. After
completing their calculations, the children exit, leaving their result matrices in
shared memory. When the parent has finished its calculation, it calls wait () for
each child. Then it sums the matrices left behind by the children into its own result
matrices. These matrices are then returned to the calling Gaussian link.

The above strategy has many benefits. This single approach allows effective
parallelism whether computing a single Fock matrix (e.g., during the SCF solution),

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 65

or whether computing many matrices (e.g., during the CPHF phase of the Hartree-
Fock second derivative evaluation, where a separate matrix for each perturbation
must be constructed). While this method requires more memory than a sub-blocking
technique, it avoids the redundant integral evaluation or extra communication (and
therefore synchronization) that would be required in a sub-blocking scheme (due to
the random nature of a quartet's contribution to a Fock matrix).

Linda Fundamentals. Because Linda has been extensively discussed in many
previous publications14"20, only its relevant features are presented here. Linda is
based on a communications abstraction called tuple space (TS). To the application
program, TS appears as a content-addressable virtual shared memory containing data
objects known as tuples. A tuple is a collection of typed fields; each field can be a
literal value or the name of a variable. Tuples are deposited into TS with the out
operation, and are withdrawn or read with either the i n or the rd operation. These
two input operations differ in that i n removes the tuple from TS, whereas rd returns
a copy of the tuple, leaving the original in TS. Both i n and rd are blocking; that is,
if the desired tuple is not in TS, the requesting process will be suspended until an
appropriate tuple becomes available. The final operation of interest is eval. While
eval is formally defined in terms of TS operations, for our purpose it may be
thought of as creating a concurrently executing process. An eval requires the name
of a subroutine, to be used as the entry point of the new process, and a short list of
simple arguments to be provided to that subroutine.

The Linda model is independent of the underlying hardware. In order to run in
parallel on a network of Unix workstations, the Linda utility nt s net is used. This
program is responsible for scheduling and initiating the Linda processes on the
desired remote nodes. Its single required argument is the name of the parent process;
all other necessary information may be provided through configuration files.

Shared Memory vs. Linda. The fundamental difference between the current
Gaussian parallel model and the Linda model is the difference in semantics between
f ork () and eval. The processes created by f ork () inherit all current state
information from the parent, i.e., they are copies of the parent as it existed at the time
of the fork () . In contrast, the processes created by eval are copies of the parent
as it initially existed. This semantic difference is required in order to support a
common programming environment across shared- and distributed-memory
computers as well as on networks of workstations being used as parallel computers.
The semantics of eval require that the child processes explicitly restore all state
information after they are created. Linda allows a small number of simple data items
to be passed in the argument list of the created processes; all other data must be
passed through TS. This state information includes all shared-memory arrays, all
COMMON blocks, and possibly, local static data.

Implementation

Analysis Of State Information. In evaluating the shared-memory version of Prism,
two primary issues had to be addressed: array existence and array reference. While
studying the dynamic array allocation in routines that call Prism, it was noted that
many arrays were equivalenced to one another, or equivalenced to a local (scalar)
scratch variable. The distinct existence of any particular array depended on which
link was being considered and on user-specified options defining the type of results
desired. Understanding all the permutations of links and options was crucial to
developing a robust implementation.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

66 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

The second issue arose in studying actual array references in Prism and in the
routines called by Prism. It was noted that under certain combinations of options,
many arrays were never referenced. This suggested that these arrays would not have
to be passed through TS for certain types of jobs. This was the only effort made to
reduce the amount of data passed through TS. Similar conclusions were reached
while studying ChewER.

The other types of state information considered were COMMON blocks and local
static data. It was determined that Prism needed six COMMON blocks initialized,
while ChewER required 13. A thorough study of all the routines possibly called by
Prism and ChewER showed several contained local static data, in the form of local
variables appearing in SAVE statements. Many of these routines were low-level
general-purpose Gaussian support routines. Each routine was considered
individually, and it was determined that the effect of the variables reverting to their
initial values was benign. Thus, there was no need to pass these variables through
TS.

Code Structure. The above analysis led to an implementation that required only
minor changes to the existing Gaussian code. A new version of the Prism setup
routine PrsmSu was written. It receives over 100 arguments destined for Prism, and
parcels them out as follows. Thirty integer scalars are stored into a local integer
array (INTARY), which is then deposited into TS. The 6 required COMMON blocks
are then deposited into TS. Depending on various problem-dependent options, as
many as 45 arrays are then deposited.

Next, PrsmSu starts the parallel processes using eval. The entry point for
each of these concurrent processes is a new routine named PrsmEv, described
below; its arguments are ten logical scalars and two integer scalars. Following the
initiation of the processes, PrsmSu calls Prism, thus participating in the parallel
solution. When this invocation of Prism returns, PrsmSu gathers the results from its
parallel processes, using the i n operation. Each result array is then added into the
corresponding array in PrsmSu. Finally, PrsmSu uses i n to remove any data still
in TS; this is merely a cleanup step to prepare TS for its next use.

The routine PrsmEv behaves like a MAIN routine in standard Fortran, except
that it receives some arguments. It is responsible for getting all the state information
from TS, allocating memory, calling Prism, and depositing the results into TS. First,
it uses rd to get a copy of INTARY, the elements of which are stored into local
scalar variables. Next, it uses rd to get copies of the COMMON blocks. At this point
PrsmEv has all the control options required to calculate the number of required
arrays (both input and output) and their sizes, so it can use malloc () to acquire the
memory needed to hold them. It then uses rd to fill the input arrays, and initializes
the output arrays to zero. This completes the necessary initialization, and Prism is
called. When Prism returns, PrsmEv deposits the result arrays into TS, calls
f ree () to release its memory, and exits.

The implementation for ChewER was constructed along similar lines, although
the number and sizes of the various arguments differ significantly.
One final implementation detail should be mentioned. A single Gaussian run can
execute dozens of links, possibly invoking several that have been parallelized.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 67

Because each link is built as a stand-alone executable program, this implies (for a
network version) that ntsnet would have to be executed several times. That is,
ntsnet cannot initiate the Gaussian execution chain; instead, ntsnet must be
initiated as part of the chain. This was accomplished by writing a C program called
lnklnd, which is symbolically linked to the names of the parallelized Gaussian
links. This program calls system () to create a shell in which ntsnet can run the
actual parallelized link. The call to system () does not return until the shell exits,
i.e., until ntsnet has terminated. At that time, lnklnd initiates the next link in the
execution chain.

Parallel Results

Procedure. Timing runs were conducted using three variations of a test case from
the Gaussian test suite. The molecule considered was triamino-trinitro-benzene
(TATB), C6H6N606. With an appropriate choice of basis set, this job is not
especially large by Gaussian standards, but it does represent a reasonable lower
bound to problems that are large enough to warrant parallel processing. A l l tests
were closed-shell calculations using direct methods.

Speedups and efficiencies were calculated as follows:

s = t p / t i
e = (s /p)* 100

where s is speedup, e is efficiency, t p is elapsed time for the parallel calculation, ti is
the elapsed time for the sequential calculation, and ρ is the number of processes.
The single-process jobs were run using the standard (sequential) version of
Gaussian, modified by the addition of the timing calls mentioned below.

Elapsed wallclock time (in seconds) was measured in two different places.
First, library calls were added to PrsmSu and Cher Su to record the elapsed
wallclock time of the parallelized Prism and ChewER, including all process
initiation and data communication costs. These times were used to calculate
speedups and efficiencies for the parallelized pieces of code. Second, the Unix
utility date was used before and after the Gaussian execution, to measure total
elapsed wallclock time for the entire job. This includes both parallel and sequential
time, including I/O and program (link) initiation times. Speedups and efficiencies
for the complete start-to-finish jobs were then computed. Detailed tabular results
may be found in the Appendix; below we present our results graphically.

Development and testing were initially performed on a Silicon Graphics Iris
4D/320GTX, a two-CPU shared-memory multiprocessor. The same program was
then recompiled with Network Linda and timed on an ethernet-connected network of
six IBM RS6000 Model 560 workstations. In this environment, all workstations
were dedicated during the timing runs, although the network was not electrically
isolated.
It should be noted that all testing was performed using the most recent development
version of Gaussian, and should not be taken as indicative of the performance of
Gaussian 92 as it is distributed.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

68 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Test Case 1. For the first test, a Hartree-Fock single-point energy calculation on
TATB was performed using the basis set 6-31G** (300 basis functions). The SCF
solution was produced after eight iterations, i.e., PrsmSu was called eight times.
The amount of data transferred through TS varied from 2 M B to 4 M B for each
iteration.

Results for Test Case 1

3000

2500 +

§ 2000

S 1500

Ί3

ce
1000 J.

500 -L

-Β—L502 Time
-A—Job Time
-•—L502 Speedup
-A—Job Speedup

Ideal Speedup

τ 6

4-5

4 α

Pu
3 ce

Number of Workstations
In this test case, link L502 is invoking Prism in order to form the Fock matrix

during the SCF solution phase. Much of the drop in efficiency within Prism can be
attributed to the redundant work in PickS4. The far greater decline in efficiency
for the entire job is a combination of the redundant work, the remaining sequential
calculations in link L502 and other links (especially link L401, which generates the
initial guess of the density matrix), and poor network configuration. In particular,
the residual sequential time increased from 260 seconds with one process to 358
seconds with six processes. This increase of almost 100 seconds is caused by slow
n t s n e t initialization on the workstation cluster being used. Subsequent testing has
revealed a faulty automount mechanism on the particular workstation used as the
master node. The system administrators for the network have not yet satisfactorily
resolved this problem, so we have been unable to re-run our tests in an optimized
network setting. However, we believe that most of the wasted time can be recovered
through appropriate network configuration and tuning. In a feasibility study such as
this one, we did not believe it necessary to pursue such tuning. Moreover, since this
type of overhead is independent of problem size, it will be less significant for
production-size calculations.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 69

Test Case 2. The second test was a Hartree-Fock gradient calculation on TATB,
also using the 6-31G** basis set. The SCF solution required 16 iterations to
converge, due to the higher accuracy required by the subsequent gradient calculation.
This test required between 2 M B and 4 M B of data to be passed through TS for each
invocation of Prism.

Here we see higher efficiencies for link L502 than in the previous test case.
This is due to scaling effects; although the basis set contained the same number of
functions, the higher accuracy necessary for convergence required more integrals to
be computed. The effect of the redundant work in PickS4 is still present, but has
less impact. For link L703, which here is invoking Prism in order to evaluate first
derivatives, there is essentially no sequential calculation present, although there is
still the redundant work in P i c k s4. The decline in Job efficiencies is due to the
same causes as in the first test case, with the added (artificially high) cost of
initializing n t s n e t for both link L502 and link L703.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

70 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Test Case 3. The final test was a Hartree-Fock frequency calculation on TATB, this
time using the 3-21G basis set (174 basis functions). The smaller basis set was
chosen to allow the single-process run to complete in a reasonable amount of time;
using the full 6-31G** basis, the single-process job would have required about two
and one-half days of CPU time. While jobs of this magnitude are not unusual in
Gaussian production environments, such resources were not available for this study.
Unfortunately, the choice of the smaller basis has the undesirable effect of reducing
the parallelizable computation. As with the previous test, link L502 took 16
iterations to converge to the SCF solution. The amount of data passed through TS
varied widely, from around 800 K B (for the smallest L502 Prism iterations) to just
over 60 M B (for the largest LI002 ChewER iterations). Due to the complexity of
this test case, we shall present the speedup results separately from the elapsed time
results.

Speedups for Test Case 3

Number of Workstations

Comparing link L502 efficiencies with the previous test, we see the effect of the
smaller basis. Link L703 (here evaluating second derivatives) still performs well,
showing less sensitivity to basis set selection. This test case includes two additional
parallelized links. Link LI 110 performs well; it accomplishes more work in parallel
than L502, computing integral derivatives and their contributions to 12 Fock
matrices. As with all the other Prism links, LI 110 suffers from the redundant work
in P i c k s 4 . Link LI002 invokes ChewER to produce integral derivatives for the
CPHF portion of the Fock matrix derivative calculation. The efficiencies for
ChewER are good. They suffer from the redundant work of ChunkR, but should
scale better than Prism because of the larger number of calculations being done in

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 71

parallel. The Job efficiencies for this test are further reduced by the need for four
invocations of n t s n e t .

It is useful to look at the elapsed time results for this test case in a slightly
different form. The following graph summarizes the elapsed time data.

With one process, the elapsed time for the entire job was 14278 seconds; with
six processes, the elapsed time was 5140 seconds, yielding a job efficiency of
46.3%. It is obvious that in the sequential calculation, the execution time is
dominated by the CPHF (LI002) calculation. However, with six processes, the
CPHF time is essentially the same as the unparallelized time. This suggests that
future efforts need to focus on additional parallelization as well as on improving the
existing parallel performance.

Future Work

In addition to constructing an experimental network-parallel Gaussian and producing
the timing results presented above, we also conducted a number of profiling studies
to identify areas for future parallelization efforts. These studies identified a number
of matrix arithmetic operations which need to be parallelized. For example, there is
a matrix diagonalization following each Prism invocation during the SCF iteration.
Furthermore, there are numerous matrix multiplication routines which are heavily
used. Some of these are invoked with a large number of (relatively) small but
independent matrices; others are invoked with a small number of very large matrices.
Appropriate strategies will have to be employed depending on the granularity of the
particular operation under consideration.

Profiling was also performed on two of the more accurate (and expensive) post-
SCF methods available in Gaussian. The results for direct and semi-direct MP2 and
semi-direct QCISD(T) were consistent with those above, indicating a need to
parallelize basic matrix operations such as multiplication. However, the situation

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

72 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

with these algorithms is complicated by the fact that they are disk-based algorithms,
due to the enormous size of the matrices involved. However, since the aggregate
memory available on a network is often far larger than that on a single machine, it
may be possible to reduce the I/O in a parallel version. Even so, it will still be
necessary to exercise care in implementing these matrix operations to avoid any I/O
bottleneck.

Since the completion of this work, we have had an opportunity to experiment
with some extensions that fall beyond the scope of our original intentions.
Specifically, we have applied the parallel model used for Prism and ChewER to
Gaussian's density functional theory (DFT) model. Also, we have experimented
with a "server" version of the parallel model in an attempt to reduce startup costs.
Preliminary results from both of these efforts look promising, and we hope to report
more fully on them in the future.

Conclusions

This work has clearly demonstrated the feasibility of developing a version of
Gaussian capable of significant parallel speedups on a network of high-performance
workstations. By using the Linda parallel programming environment, development
and debugging efforts were minimized, while the underlying portability and
performance of Gaussian were maintained. Potential obstacles to increased parallel
performance were identified. Some minor tuning and implementation issues were
also identified; these need to be resolved in order to fully exploit the currently
available parallelism.

References

1. Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Foresman, J. B.;
Wong, M. W.; Johnson, B. G.; Schlegel, H. B.; Robb, Μ. Α.; Replogle, E. S.;
Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.;
Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. Α.;
Gaussian, Inc.: Pittsburgh, 1992

2. Schlegel, Η. B.; Frisch, M. J. In Theoretical and Computational Models for
Organic Chemistry; S. J. Formosinho, Ed.; Kluwer Academic Pubs.: The
Netherlands, 1991; pp 5-33.

3. Gill, P. M. W.; Head-Gordon, M.; Pople, J. A. J. Phys. Chem. 1990, 94, 5564-
5572.

4. Gill, P. M. W.; Johnson, B. G.; Pople, J. A. Int. J. Quant. Chem. 1991, 40, 745-
752.

5. Gill, P. M. W.; Pople, J. A. Int. J. of Quantum Chem. 1991, 40, 753-772.
6. Frisch, M. J.; Head-Gordon, M.; Pople, J. A. J. Chem. Phys. 1990, 141, 189-196.
7. Modern Techniques in Computational Chemistry; Clementi, E., Ed.; Escom

Science Publishers: 1990.
8. Colvin, M.; Janssen, C. MPCRL Research Bulletin 1993, 3, 6-9.
9. Dupuis, M.; Watts, J. D. Theoret. Chim. Acta 1987, 71, 91.
10. Guest, M. R; Harrison, R. J.; vanLenthe, J. H.; vanCorler, L. C. H. Theoret.

Chim. Acta 1987, 71, 117.
11. Luthi, H. P.; Mertz, J. E.; Feyereisen, M. W.; Almlof, J. E. J. Comp. Chem.

1992, 13, 160-164.
12. Feyereisen, M. W.; Kendall, R. Α.; Nichols, J.; Dame, D.; Golab, J. T. J. Comp.

Chem 1993, 14, 818-830.
13. Frisch, M. J.; Gomperts, R. paper in preparation

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 73

14. Scientific Computing Associates Inc. Fortran-Linda Reference Manual; New
Haven, CT: 1993.

15. Arango, M.; Berndt, D.; Carriero, N.; Gelernter, D.; Gilmore, D.
Supercomputing Review 1990, 10, 42-46.

16. Scientific Computing Associates Inc. C-Linda User's Guide & Reference
Manual, New Haven, CT: 1993.

17. Carriero, N.; Gelernter, D. How to Write Parallel Programs: A First Course;
MIT Press: Cambridge, 1990.

18. Bjornson, R. Ph.D. Dissertation Thesis, Department of Computer Science, Yale
University, 1993.

19. Bjornson, R.; Carriero, N.; Gelernter, D.; Kaminsky, D.; Mattson, T.; Sherman,
A. "Experience with Linda," Department of Computer Science, Yale University,
1991.

20. Carriero, N. "Implementation of Tuple Space Machines," Department of
Computer Science, Yale University, 1987.

Appendix

In the tables below, ρ is the number of processes, t is the measured elapsed
wallclock time in seconds, s is the computed speedup, and e is the computed
efficiency.

Results for Test Case 1

Prism (L502) Job

Ρ t s e t s e
1 2739 2999

2 1409 1.94 97.2 1719 1.74 87.2

3 977 2.80 93.4 1294 2.32 77.3

4 771 3.55 88.8 1104 2.72 67.9

5 653 4.19 83.9 1009 2.97 59.4

6 580 4.72 78.7 938 3.20 53.3

Results for Test Case 2

Prism (L502) Prism (L703) Job

p t s e t s e t s e

1 6507 2565 9541

2 3325 1.96 97.8 1292 1.99 99.3 5162 1.85 92.4

3 2288 2.84 94.8 874 2.93 97.8 3727 2.56 85.3

4 1801 3.61 90.3 663 3.87 96.7 3060 3.12 77.9

5 1516 4.29 85.8 544 4.72 94.3 2699 3.54 70.7

6 1327 4.90 81.7 465 5.52 91.9 2439 3.91 65.2

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

74 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Results for Test Case 3

Prism (L502) Prism (L703) Prism (L U 10)

Ρ t s e t s e t s e

1 713 1326 1378

2 399 1.79 89.3 680 1.95 97.5 726 1.90 94.9

3 286 2.49 83.1 455 2.91 97.1 510 2.70 90.1

4 245 2.91 72.8 350 3.79 94.7 408 3.38 84.4

5 222 3.21 64.2 280 4.74 94.7 352 3.91 78.3

6 219 3.26 54.3 240 5.53 92.1 307 4.49 74.8

ChewER (L1002) Job

Ρ t s e t s e
1 9243 14278

2 4783 1.93 96.6 8234 1.73 86.7
3 3364 2.75 91.6 6323 2.26 75.3
4 2755 3.35 83.9 5587 2.56 63.9

5 2480 3.73 74.5 5357 2.67 53.3

6 2204 4.19 69.9 5140 2.78 46.3

RECEIVED November 15,1994

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
9,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

5

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 6

The Parallelization of a General Ab Initio
Multireference Configuration Interaction

Program
The C O L U M B U S Program System

Hans Lischka 1 , Holger Dachsel 1, Ron Shepard2, and Robert J . Harrison 3

1Institut für Theoretische Chemie und Strahlenchemie, Universität Wien,
A-1090 Vienna, Austria

2Argonne National Laboratory, Argonne, IL 60439
3Pacific Northwest Laboratory, Richland, WA 99352

A massively parallel version of the diagonalization section of the the
COLUMBUS MRSDCI program system is reported. Coarse grain
parallelization is performed at the topmost level of the program by
means of the segmentation of the trial and resulting update vectors of
the iterative Davidson scheme. Message passing based on the portable
toolkit TCGMSG and the global array tools are used for communication
between processors. Test calculations with CI dimensions of more than
2.5 million were carried out on the Intel Touchstone Delta with a
parallel efficiency of more than 90% on 320 processors. An outline of
the parallelization of the entire program system is also given.

Parallel computing is one of the great challenges in the computationally oriented
sciences. It is of particular importance in Quantum Chemistry since practically all
computational methods are extremely time corisuming if realistic simulations of
molecules are attempted. Starting with the pioneering work by Clementi and coworkers
on "loosely coupled array of processors (LCAP)" (1) several investigations on the
parallelization of SCF programs have been reported (2-11). In addition, efforts to
parallelize electron correlation methods like M0ller-Plesset Second-Order Perturbation
Theory (12), Coupled-Cluster theory (13,14) and full CI (15,16) have been undertaken
as well. For reviews on the use massively parallel computers in Quantum Chemistry see
e.g. (17,18).
Because of its simplicity, the direct SCF approach is most promising with respect to
parallelization. The accuracy of the SCF method is sufficient for many standard
situations in chemistry. However, if one wants to achieve higher precision and/or more
general applicability electron correlation methods have to be used. Here, the situation is
more complex since, depending on the case, at least a partial transformation of the two-
electron integrals from the A O into the M O basis has to be carried out One of the most
complicated, but also one of the most general methods is the multi-reference single-
and double-excitation configuration interaction (MRSDCI) approach. It is our aim to

0097~6156/95/0592-0075$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

76 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

develop a portable, massively parallel MRSDCI program on the basis of the
COLUMBUS program system (19,20). Γη our previous investigation (21) we had
shown that via coarse grain parallelization and message-passing based on the portable
program package TCGMSG (22) developed by one of us (RJH) the diagonalization
step can be very well parallelized. This program version was working on a variety of
parallel computers, both shared memory (Alliant FX/2800, Cray Y - M P , Convex C2)
and distributed memory (iPSC/860). Calculations with up to 8 processors were
performed. The most severe bottlenecks of that version were located in the managment
of the data files (mainly the two-electron integrals and the CI- and other expansion
vectors) because of the restrictions inherent in the message-passing model. In order to
improve this situation we have made use of the recently developed global-array tools
(23) (see below). With these tools and introducing other enhancements (like virtual
disks and an improved dynamic load balancing scheme) we are now in the position to
use efficiently more than 300 processors on the Intel Touchstone Delta. It is the
purpose of this communication to report in more detail on our achievments and to give
an outline of our plans concerning the parallelization of the entire program system.

Review of our Previous Work

The COLUMBUS program system (19,20) is a collection of Fortran programs for
performing general ab initio MRSDCI calculations and is based on the Graphical
Unitary Group Approach (24,25). For accurate, large scale MRSDCI calculations the
computationally most demanding section is the diagonalization of the matrix
representation of the hamiltonian operator in the basis of the configuration state
functions (CSFs). Expansion lengths of 1 - 10 million are now becoming routine with
the COLUMBUS program system. The iterative Davidson diagonalization method (26)
is used to determine the appropriate eigenvectors and eigenvalues. In this scheme, the
most important step by far is the computation of a matrix-vector product w, = Hv, (w,
is called the resulting product vector) of the hamiltonian matrix H and trial vectors ν,·.
A "direct CI" procedure (27) is used to compute this matrix-vector product. It is driven
by the four indices of the two-electron integrals. In order to compute the subspace
representation of Η with respect to the trial vectors and the overlap matrix for the trial
vectors scalar products v*wy. and v*v;. have to be calculated as well.

As has been discussed in detail in (21) we decided for a coarse grain
parallelization of Hv in which the outermost loops over segment pairs of the vectors ν
and w were used for parallelization. This choice had several advantages:

• it provided the most coarse-grain decomposition possible,
• the complexity of the code below these loops did not affect the parallelization,
• each process only needed to hold four vector segments,
• the number of tasks is actually proportional to the square of the number of

segments. Thus it is possible to generate a sufficiently large number of tasks to make
load balancing effective.

Dynamic load balancing was implemented via a shared counter. Each index in
this counter corresponded to a task defined by the work to compute the contribution of
one segment pair to the matrix-vector product w = Hv. Each process had a local copy
of w on which the partial contributions to it were updated. Each process also had to
read all integrals (and other quantities, like indexing arrays, which were not important

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

6. LISCHKA ET AL. Midtireference Configuration Interaction Program 77

in terms of I/O). After completion of the loops over segment pairs the total vector w
was obtained by a global sum operation from all partial contributions which had been
accumulated by each process. In the original, sequential program there was also a
formula tape which contained the coupling coefficients which determined the
contribution of the one- and two-electron integrals to each matrix element of H. The
formula tape entries were determined in terms of internal M O indices only. This
formula tape was replaced by recalculating the required coupling coefficients on the fly.
The actual updating scheme was carried out in terms of dense-matrix kernels (BLAS
routines (28)) of the dimension of the M O basis. A l l files were located on magnetic disk
and were accessed in the same way as in the sequential program. The subspace
manipulations were not parallelized at all.

Because of the top level coarse-grain parallelization only few and rather simple
modifications had to be implemented into the original sequential code. In particular, the
above-mentioned updating scheme in terms of dense-matrix kernels was completely
unchanged.

Outline of the New Features

The main purpose of our first implementations was to investigate the overall efficiency
of our segmentation scheme. From the analysis of the timings reported in (21) one can
see that load balancing worked very well for the number of processors used and that
substantial speedups could be achieved. However, it was also clear from the results
obtained especially from the iPSC/860 that storing data on disk and having each
processor access them directly from there created a severe bottleneck. In order to judge
the amount of data transferred it is important to note that the 4-,3- and 1-external
integrals were only read Ν« 8/2 times (Ν«.8 being the number of segments) and the
remaining integrals (2- and O-external) N ^ N ^ - l) ^ times in each iteration in the
Davidson procedure. Thus, for the test cases and the number of segments (typically
between 20 to 30) chosen in (21) the amount of data transfer was dominated by the 2-
external integrals even though they only constitute a small fraction of the 4- and 3-
external ones. Also, reading the trial vector segments and writing the resulting product
vector segments for each segment pair created substantial I/O overhead.

In order to overcome the just mentioned difficulties we proceeded in two steps.
In the first step we tried to reduce the amount of data transfer to a rninimum while still
using the conventional message-passing tools. In the second step we extended
message-passing by the global-arrays tools in order to allow more flexibility in
accessing data distributed over the memory of the individual processors.

For the purpose of comparison with our previous timings we use the same C H 3

test cases as before (21): C 2 v -pVDZ and C r p V T Z . The CI dimensions were 70 254
and 2 528 400, respectively.

Virtual Disk and Data Compression. First of all, we introduced the concept of a
virtual disk residing in central memory. Files could be optionally written to this virtual
disk instead of writing them to a magnetic disk. Thus, slow disk I/O was replaced by
fast internally copying data in central memory. Since only space for four segments (and
some other data buffers, etc.) have to be kept in core at the same time the requirements
of our program concerning central memory are rather modest. Therefore, depending on
the actual central memory available on a given computer, we can set aside an additional

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

78 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

amount of memory for the purpose of a virtual disk. Overflow of this storage area to
disk is possible so that in cases of insiifficient central memory the calculation does not
break down but continues with ordinary disk I/O.

In order to make use of the virtual disk in an economic way a data compression
scheme for the trial and the resulting product vectors was developed (29). Each of
these vectors was truncated to a fixed number of decimal places which is chosen such
that a given accuracy in the Davidson diagonalization scheme is obtained. A special
floating point representation with a 7 bits exponent, one bit for the sign and with a
variable length mantissa is used for that purpose. With an energy threshold of 10"6

hartree an overall reduction of the two vector files by factors between 4 to 6 is
achieved. Moreover, the subspace dimension in the Davidson procedure is set to four in
order to reduce also in this way the amount of data to be stored. A new trial and
resulting product vector is constructed from the individual subspace components each
time the limit of the subspace expansion is reached.

Test calculations were performed on an iPSC/860 with 16 M B available on
each node. The C2V-pVDZ test case is small enough (integral files 1.2 M B total,
compressed trial vectors and resulting product vectors 1 M B , compression factor 4.5)
so that all files can be kept as separate copies on the local virtual disk of each
processor. Since the integral files do not change during the iterations they are copied to
the individual nodes at the beginning of the calculation. In each Davidson iteration, the
trial vector is broadcast to all nodes and after completion of the hamiltonian matrix trial
vector product the partial results are summed up via a global sum operation. The
subspace manipulations were not parallelized at this stage of program development.
Using the above-mentioned test example no disk I/O was performed at all during the
entire calculation. This replicate data approach gave us well defined conditions in order
to study the performance of the dynamic load balancing scheme in detail. Of course, it
is not well suited to allow larger calculations because of its extensive memory
requirements.

In Table I timings for the iPSC/860 based on the just described program version
are given. Compared to the previous results reported in Tab. 5 of Ref. 21 significant
improvements in the speedups for the Hv step are observed. In particular, speedup
factors of 6.8 for the 8 processor case and 11.9 for the 16 processor case are found.
The difference between the observed and theoretical values are due to deficiencies in
the load balancing scheme in that particular program version. In the timings for the
global sum operation cpu times for data compression are included as well. As noted
above, the subspace manipulations were not parallelized.

Table I. Timings for the CH 3 C^-pVDZ test case determined on the iPSC/86Qa

no.procs. 1 2 4 8 16

1. broadcast 0.0 1.6 1.7 1.7 1.7

2. Hv 303.6 159.0 83.5 44.5 25.5

3. global sum 5.8 6.3 7.2 8.7 10.2

4. subspace 4.7 4.7 4.7 4.7 4.7

5. complete
iteration

314.2 173.0 97.1 60.0 42.4

Timings are given in sees, wall clock time.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

6. LISCHKA ET AL. Midtireference Configuration Interaction Program 79

Global Arrays and Improved Dynamic Load Balancing. Despite of the advantages
of the replicate data approach described above there are some major drawbacks to i t
One has already been mentioned and comes from excessive memory requirements if
one wants to keep local copies of the integral, ν and w files on each node. Another one
arises because the entire trial vector has to be broadcast to all processors even though
only a fraction of it will be used. Since we use dynamic load balancing, we do not have
a deterministic sequence of tasks on each processor. Therefore, the whole vector has to
be communicated at the beginning of each iteration. At the end of each iteration the
partial updates to the resulting product vector w computed by each process have to be
summed up resulting in a synchronization barrier. There is ample opportunity in the
program to interleave asynchronous reading data from and writing data to individual
nodes without interfering significantly with the operations taking place on other nodes.
E.g., it is not necessary to read the entire trial vector ν at the beginning of the iteration.
It would be sufficient to access just those segments at the time they are actually needed.
Similar arguments apply to the updating procedure of the vector w.

In order to achieve this increased flexibility we use the global-array toolkit
developed by one of us (23). These tools support one-sided access to data structures
(here limited to one- and two-dimensional arrays) in the spirit of shared memory. With
some effort this can be done portably resulting in a much easier programming
environment, speeding up code development and maintainability. Significant
performance enhancements are observed by the aforementioned utilization of
asynchrony of the execution of processes.

Using the global arrays we are in the position to distribute all major files over
the memory of the individual nodes. It is stressed, that in contrast to the previous
program version now no multiple copies of files are required. However, we can still
keep any files additionally, if we wish, as multiple copies as before in the
aforementioned local virtual disks on each processor. This is especially advisable in
cases, like the two-external integrals, where the file size is moderate but the file is read
frequently. No access to disk files is made during the calculation.

With the global arrays it is also straightforward to parallelize the subspace
manipulations as well. Since the segment distribution over processors is the same for ν
and w the computation of the scalar products can be arranged such that each processor
only accesses local vector segments. Only these partial contributions for each segment
have to be summed globally. The necessary communication between processors for that
purpose is very small. Overall, the subspace step is very well parallelized and does not
contribute significantly to the total timings.

When going to larger numbers of processors the flexibility of our load balancing
scheme had to be increased as well. Because of Amdahl's law (30) it is of utmost
importance to avoid idle times of processors. Such a situation arises because some of
the processors finish the Hv step earlier than others since no more work is available. In
order to avoid this idling the granularity of the tasks towards the end of the
computation of Hv has to be sufficiently small. In the original program each task
consisted of the work for one pair of segments of v. First of all, it was straightforward
to further subdivide this task with respect to the number of internal orbital indices of
the two-electron integrals. A task list was generated and ordered according to
decreasing timings (at the moment determined from the timings of the first iteration).
The load balancing via the shared counter was now based on that ordered task list

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

80 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

which usually gave a nearly optimal load balance. In order to quantify the amount of
idle times we define an efficiency of parallelization e for the Hv step as

e=—hsa—β d)

ttotai is the total time needed by all processors to compute Hv, tmax is the longest time on
one processor and nproc is the number of processors.

Benchmark Calculations

Benchmark calculations have been performed on the Intel Touchstone Delta at Caltech
using the Q - p V T Z test case. In order to give an overview of the space requirements
for the global arrays individual file sizes are given as follows:

integrals
4-external 38.0 M B , 3-external 16.3 M B , 2-external 1.4 M B , 1-external 0.13
M B and 0-external 0.033 M B

ν and w vectors (4 vectors each)
162.0 M B ; diagonal elements of H- 20.3 M B plus several indexing arrays 3.3
M B

The 2-, 1- and 0-external integrals and an indexing vector referring to internal
walks (0.9 MB) were stored as separate copies on each node on local virtual disks (2.5
M B total). The remaining data (239.9 MB) were kept via global arrays as a single
copy. Due to the very limited central memory available on each node of the Delta (12
M B including operating system) only about 1.5 M B were available for global arrays on
each node. Thus, we need at least the memory of about 160 processors to accomodate
the space for the global arrays. The trial and update vectors were split into 115
segments.

In Fig.l the speedup curve for calculations up to 512 nodes is shown and
compared to the ideal behavior. The observed speedup curve follows the theoretical
one very closely to about 320 processors. Then the speedup starts to deteriorate. From
448 to 512 processors even a decrease is to be observed. The reason for that behavior

3.00

192 256 320 384 448 512

procs.

Figure 1. Speedup curves obtained on the Intel Touchstone Delta for the CH3 Q -
pVTZ test case.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

6. USCHKA ET AL. MuUireference Configuration Interaction Program 81

comes from the fact that some of the 3- and 4-external integral cases start to dominate
the calculation. As already mentioned above, some processors are still busy while
others are already idling because of lack of work. This behavior is cleary demonstrated
in Fig. 2 where the efficiency of parallelization as defined in equation 1 is shown in
dependence of the number of processors. The efficiency of parallelization remains well
above 90% up to 320 processors and then drops significantly for the just mentioned
reasons. It would not be too difficult to split the 3- and 4-external cases further.
However, since we plan to formulate these cases in a totally different way in the next
future (see below) we renounced in spending some effort into this aspect of program
optimization now. We also want to stress that even though we did not perform the Q -
pVTZ test case with less than 192 processors, from our experience with other test runs
(on workstation clusters and on the IBM SP1) we are positive that the respective
speedups would also follow closely the theoretical curve to lower processor numbers if
only more central memory would be available on each node.

Conclusions and Outlook

Using the global-array toolkit a very satisfactory parallelization of the CI part of the
COLUMBUS program system has been achieved. We are in the position to run that
most complicated, and in many cases also by far dominating part very efficiently on
more than 300 nodes on the Intel Touchstone Delta. Implementations on the IBM SP1
and the KSR2 are planned for the next future. As the program is now, the computer
time increases significandy with the number of segments (21) because some overhead is
introduced in the formula generation for each segment pair. In order to reduce this
overhead we have developed a scheme which uses specially adjusted Distinct Row
Tables (for the definition of the DRT and further information on G U G A see (24,25)) in

100.00

70.00 A 1 1 1 1 1
192 256 320 384 448 512

procs.

Figure 2. Efficiency of parallelization as defined by Eq. (1) obtained on the Intel
Touchstone Delta for the C H 3 d - p V T Z test case.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

82 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

order to construct just those coupling elements which are needed for that particular
segment pair. First results are very encouraging.

The major next change in the program will affect the treatment of the 3- and 4-
external integrals and is crucial for the design of the parallel structure of the whole
program system. As it is now, the COLUMBUS program is structured in the
conventional way, i.e. the two-electron integrals are calculated in the A O basis,
transformed to the M O basis and then sorted into the different cases according to the
number of external indices (0- to 4-external). These steps require a lot of complicated
sorting and I/O steps with large amounts of data. This procedure is certainly not
appropriate for parallelization. In case of a MRSDCI wave function A O driven
formalisms for the 3- and 4-external integral cases have been developed (31,32).
Therefore, a restricted integral transformation for the remaining 2-, 1- and 0-external
integrals is required only. A first sequential code along these lines has been introduced
into the COLUMBUS program as well (33). It will be the basis for a "double direct"
MRSDCI program where all major I/O bottlenecks will be removed and which should
be particularly well suited for parallelization.

Acknowledgments

This work was performed under the auspices of the Austrian "Fonds zur Forderung der
wissenschaftlichen Forschung", project nr. P9032 and the High Performance
Computing and Communication Program of the Office of Scientific Computing and the
Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of
Energy, under the contract number W-31-109-Eng-38 with the Argonne National
Laboratory and under contract DE-AC-76RLO 1830 with Battelle Memorial Institute
which operates the Pacific Northwest Laboratory. The calculations on the iPSC/860
and the Intel Touchstone Delta were performed at the CCSF at Caltech, those on the
IBM SP1 at the ACRF of the Argonne National Laboratory. We are grateful for the
competent support of our work by these computer centers.

References

1. E. Clementi, Modern Techniques in Computational Chemistry, E. Clementi, Ed.,
Escom Science Publishers, 1990, chap. 1; D. Folsom Modern Techniques in
Computational Chemistry, E. Clementi, Ed., Escom Science Publishers, 1990,
chap. 27.

2. Dupuis, M., Watts, J. D. Theor. Chim. Acta 1987, 71, 91.
3. Harrison, R. J., Kendall, R. A. Theor. Chim. Acta 1991, 79, 337.
4. Lüthi, H . P., Mertz, J. E., Feyereisen, M . W., Almlöf, J. E. J. Comp. Chem.

1992, 13 160.
5. Kindermann, S., Michel, E., Otto, P. J. Comp. Chem. 1992, 13, 414.
7. Brode, S., Horn, H. , Ehrig, M . , Moldrup, D., Rice, J. E., Ahlrichs, R. J. Comp.

Chem. 1993, 14, 1142.
8. Schmidt, M . W., Baldridge, Κ. K., Boatz, J. Α., Elbert, S. T., Gordon, M . S,

Jensen, J. H , Koseki, S., Matsunaga, N . , Nguyen, Κ. Α., Su, S., Windus, T. L. ,
Dupuis, M . , Montgomery, J. Α., Jr. J. Comp. Chem. 1993, 14, 1347.

9. Colvin, M . E., Janssen, C. L. , Whiteside, R. Α., Tong, C. H. Theor. Chim. Acta
1993, 84, 301.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

6. LISCHKA ET A L Midtireference Configuration Interaction Program 83

10. M . Petterson, L. G., Faxen, T. Theor. Chim. Acta 1993, 85, 345.
11. Burkhardt, Α., Wedig, U . , Schnering, H. G. v. Theor. Chim. Acta 1993, 86,

497.
12. Watts, J. D., Dupuis, M . J. Comp. Chemistry 1988, 9, 158.
13. Rendell, A. P., Lee, T. J., Lindh, R. Chem. Phys. Lett. 1992, 194, 84.
14. Rendell, A . P., Guest, M . F., Kendall, R. A. J. Comp. Chem. 1993, 14, 1429.
15. Harrison, R. J., Stahlberg, E. A. J. Parallel and Distributed Computing in

press.
16. Bendazzoli, G. L., Evangelisti, S. J. Chem. Phys. 1993, 98, 3141.
17. Colvin, M . E., Whiteside, R. Α., Schaefer III, H . F. Methods in Computational

Chemistry; Wilson, S., Ed., Plenum: Ν.Y., 1989, Vol. 3, pp. 167.
18. Kendall, R. A. Int. J. Quantum Chem. 1993, S27, 769.
19. Lischka, H., Shepard, R., Brown, F., Shavitt, I. Int. J. Quantum Chem. 1981,

S15, 91.
20. Shepard, R., Shavitt, I., Pitzer, R. M . , Comeau, D. C., Pepper, M . , Lischka, H ,

Szalay, P. G., Ahlrichs, R., Brown, F. B., Zhao, J. G. Int. J. Quantum Chem.
1988, S22, 149.

21. Schüler, M . , Kovar, T., Lischka, H., Shepard, R., Harrison, R. J. Theor. Chim.
Acta 1993, 84, 489.

22. Harrison, R. J. Intern. J. Quantum Chem. 1991, 40, 847.
23. Harrison, R. J. Theor. Chim. Acta 1993, 84, 363 and unpublished further work.
24. Paldus, J. The Unitary Group for Evaluation of Electronic Energy Matrix

Elements; Hinze, J., Ed., Springer-Verlag: Berlin 1981, pp.1.
25. a) Shavitt, I. The Unitary Group for Evaluation of Electronic Energy Matrix

Elements, Hinze, J., Ed., Springer-Verlag: Berlin 1981, pp.51,
b) Shavitt, I. Mathematical Frontiers in Computational and Chemical Physics;
Truhlar, D. G., Ed., Springer-Verlag: Berlin 1988, pp. 300.

26. Davidson, E. R. J Comp Phys 1975, 17, 84.
27. a) Roos, B . O., Chem Phys. Lett. 1972, 15, 153.

b) Roos, B. O., Siegbahn, P. Ε. M . Methods of Electronic Structure Theory;
Schaefer III, H . F., Ed., Plenum: N Y 1977, pp. 277.

28. a) Dongarra, J. J., DuCroz, J., Hammerling, S., Hanson, R. ACM Trans. on
Math. Soft. 1988, 14, 1.
b) Dongarra, J. J., DuCroz, J., Duff, I., Hammerling, S. ACM Trans. on Math.

Soft. 1990, 16, 1.
29. Dachsel, H . , Lischka, H . unpublished results.
30. Amdahl, G. M . Proc. AFIPS Spring Joint Computer Conf. 1967, 30, 40.
31. Werner, H . J., Reinsch, E.-A. J.Chem.Phys. 1982, 76, 3144.
32. Ahlrichs, R. Proceedings of the 5th Seminar on Computational Methods in

Quantum Chemistry, Duijnen, T.H.v., Nieuwport, W.C., Eds., MPI Garching,
Germany 1982.

33. Kovar, T., Lischka, H . unpublished results.

RECEIVED January 19,1995

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
28

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

6

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 7

Parallel Calculation of Electron-Transfer
and Resonance Matrix Elements

of Hartree—Fock and Generalized Valence
Bond Wave Functions

Erik P. Bierwagen, Terry R. Coley, and William A. Goddard, III

Materials and Molecular Simulation Center, Beckman Institute,
California Institute of Technology, 139-74, Pasadena, CA 91125

We review the theory for the computation of the Hamiltonian matrix
element between two distinct electronic wave functions ΨA and ΨB

sharing the same nuclear configuration but differing electronic density
distributions. For example, ΨΑ and ΨB might describe two end-
points in an electron transfer reaction or two configurations in a reso
nance description of a molecule. In such cases the calculation of the
rate of electron transfer or resonance energy requires evaluation of
ΨA|Ĥ|ΨB = ΨAB matrix elements. Because the orbitals of ΨΑ and
ΨB have complicated (non-orthogonal) relationships, the calculation

of HAB had been computationally intensive. In this paper we consider
ΨΑ, ΨB having the form of closed or open-shell Hartree-Fock or

Generalized Valence Bond wave functions and show the parallel
structure of the theory. Using this parallel structure we present an ef
ficient computational implementation for shared memory multi
processors.

The starting point of most ab initio quantum chemistry is an antisymmetrized product
of molecular orbitals ΨΑ = |0A0$0C...|. To compute properties such as energy,

EA = (ΨΑ \Ê\ ΨΑ), the molecular orbitals of ΨΑ are constructed to be mutually or
thogonal. However, many problems are conveniently described in terms of two dif
ferent ground state wave functions. For example to describe the charge transfer be
tween ΨΑ and Ψβ\

0097-6156/95/0592-0084$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 85

we need to compute cross-matrix elements, (¥ Ά | ^ | ^B) = ^ A B » where each mo
lecular orbital of ΨΑ overlaps some or all orbitals of ΨΒ. In this case the electron
transfer rate is proportional to I ^ A ^ 2 > where:

Τ - HAB ~ SABHAA
1~SAB (1)

SAB = (*ΡΑ I Ψ8) i s t h e overlap matrix.
Another example is the computation of chemical resonance energies. In this case

ΨΑ and ΨB describe two different valence states (e.g., the two valence states of
benzene). Representing the resonating wave function as Ψ = ΨΑ + ΨΒ, we can cal
culate its energy,

EAm =
_(ΨΑ + ΨΒ\Η\Ψ* + Ψ*)^ΗΑΑ + ΗΒΒ + 2ΗΑ

^ ΨΑ + ΨΒ j ΨΑ + ΨΒ^ 2 + 2SA
^AB

> ^ > 3 a b (2)

only if we have the means to calculate HAB and S ^ . Because of its intimate rela
tionship to resonance energies, we will refer to HAB as a resonance matrix element.

The computation of resonance matrix elements can also be used to evaluate con
figuration interaction (CI) wave functions in cases where the configurations are non-
orthogonal. Such non-orthogonal CIs have been successfully carried out (7); how
ever, the computational complexity has limited the applications. If they can be made
practical, non-orthogonal CI approaches have two distinct advantages over orthogo
nal CIs:

1) the component states ΨΑ and ΨΒ can be chosen to be chemically
meaningful descriptions of the system

2) this "better" choice of basis states reduces the number of states needed
to accurately describe the system

Electronic reorganization problems such as electron transfer and interpretation of
photoelectric spectra lead naturally to a few-state description in terms of non-or
thogonal basis states.

A straightforward calculation of for non-orthogonal wave functions in
volves non-orthogonal matrix elements involving all orbitals of ΨΑ overlapping all
orbitals of ΨΒ leading to an Ν ! dependency, where Ν is the number of occupied
spatial orbitals in each wave function. This contrasts with the case of orthogonal
spatial orbitals where there are only of order Ν 2 operations. To simplify this problem
Voter and Goddard (2) showed that a pair of unitary transformations exists, which
when applied to the molecular orbitals of ΨΑ and ΨΒ, respectively, a) leave the to
tal energy, E^, unchanged and b) reduce the computational effort to order Ν 2 by
transforming ΨΑ and ΨΒ such that each orbital of ΨΑ overlaps exactly one orbital
of ΨΒ. By reducing the computational effort this biorthogonalization, makes the
resonance calculation tractable.

Despite the computational savings obtained with clever transformations such as
biorthogonalization, many systems of interest, especially in electron transfer studies,
remain too large for practical HAB calculations with existing computer codes. Cur
rent programs, which have served well for smaller cases, do not exploit the underly-

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

86 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

ing parallelism in the theory and therefore cannot take advantage of multi-processor
computers without significant restructuring (3).

Goals Through the use of modern programming languages and software design we
have produced a program for computing resonance matrix elements for systems of
potentially unlimited size. The program meets the following design goals:

• efficient performance on shared-memory multi-processors
• user level control over the program's internal data structures and algorithms

The Method section exposes the parallelism inherent in the theory of resonance ma
trix element calculations. The Algorithm section introduces algorithms for shared-
memory multi-processors and shows how the first goal was achieved. Program Ar
chitecture discusses our second goal in more general terms. Finally, in Results and
Discussion we present timings and resonance energies for two systems of chemical
interest.

The computational theory of resonance matrix elements was developed by Voter and
Goddard to examine the resonance energy between valence bond (and generalized
valence bond (GVB)) (4-7) wave functions and is described elsewhere (2, 8). The
following discussion highlights those parts of the theory that assist in understanding
the parallel algorithm.
Consider the resonance energy between two HF type wave functions as in equation 2
where Ψχ = \φΪΦ*ΦΪ··\ is a normalized, antisymmetrized molecular wave function,
and 0.*are the molecular orbitals (MO's). This problem is simplified by transform
ing the orbitals of *FA and ΨΒ such that:

This biorthogonalization reduces the problem to the more standard-looking evalua
tion:

where the overlap has been replaced by a product of the individual orbital overlaps.
Expanding the above expression over molecular orbitals leads to:

Method

(3)

ΗΑΒ=(ψΑ\Η\ψΒ)3ηάΞΑΒ^Υ[λ{

(4)

(5)

(6)

(7)

^ Γ = (^ (1) ^ (2) | - | ^ (1) ^ (2))
r λ Ί > the exchange term (8)

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 87

Generalizing this result to the open-shell case requires treating the alpha and beta
spin systems separately when performing the biorthogonalization. This treatment is
necessary in order to produce transformations which leave the energy unchanged:

HAB ~ Σ Άΐα^ία,ία + Σ Ήΐβ^ί^ΐβ + Σ Viaja[jîa,ja " Kia,ja) +
ia ίβ iaja

Σ νίβ^φΒ;β-Κφ*β)+ Σ ViaJfi{j?aBjv)
Φ>]β iajfi (9)

where the a and β indices indicate spin, and the r/'s are as defined in equation 5.
Further generalizing this result for multi-determinantal wave functions:

φ A _ ^ çAa ψΑα φΒ = ^ ç<Ba ψΒα

a and « (10)

the matrix element can be rewritten, giving a sum of single-determinant pair energy
calculations:

HAB = Σ Σ cAacBb (ΨΑα \h\ ΨΒΙ} \
a b (11)

Using a basis set expansion:

" (12)

and rewriting HM in terms of density matrices, we have the following expression:

^CAaCBt(WA'\H\WBb} =

ab μνλσ ν y ' v ν ' / ι / > \
one electron contribution two electron contribution (1J J

where D^v = Σ€μ?€ν? i s a V^h pseudo-density matrix element for the abth determi-
i

nant pair; (χμχν\χλχσ) is the two electron integral over basis functions; Τμν is the
kinetic energy over basis functions; νμν is the potential energy over basis functions;
and we have incorporated the rç's into the density matrices. The most time consum
ing part of the above calculation is the two-electron contribution, and our algorithm is
dedicated to calculating this contribution efficiently.

Algorithm

Generally, the two electron integrals are stored as a set of all λσ indices for a specific
μ ν index. In the following discussion μν and ab are "pair indices": they span all
pairs of μ, ν (basis functions) and a,b (density matrices) indices, respectively. The

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

88 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

notation μ ν + i indicates that the next pair index (the usual sequence is 1,1; 2,1; 2,2;
3,1;...etc.), and in a similar manner ab+1 denotes the next density matrix pair index.
In order to calculate the contribution for this particular set of integrals (pair index μν)
and a particular density matrix (pair index ab), the following operations are neces
sary:

1) Read in or compute the integrals (all λσίοτ a particular μ ν index)
2) Read in or compute the pseudo-density matrices (index ab)
3) Calculate the energy contribution for the abμv indices (E^)

Pipeline Algorithm The above operations are not independent: the two-electron en
ergy calculation requires prior setup of the integral and, density matrix information.
Despite these interdependencies, the separation of the computation into the above op
erations represents the first opportunity for parallel computation. Each operation will
have its own processor pool; in order to keep each pool simultaneously active, we use
a pipeline to control the data flow: while a two-electron energy component, ΕΛμν, is

being calculated by one of the processor pools, the integral set μ ν + i and density ma
trix ab+1 are being simultaneously read/calculated by processor pools two and three.
In Figure 1, each labeled operation occurs simultaneously on different processor
pools. When all three tasks are finished for the specified pair indices, the results flow
as indicated and processing starts on the next set of pair indices.

Read in integrals μν+l Calculate density matrix ab+1

t

C o m p u t e ^ μ ν

Figure 1: Pipeline for Computation of ΕΛμν

The next obvious opportunity for parallelism would be to create multiple pipe
lines feeding into different portions of the energy calculation (Figure 2):

Figure 2: Parallel Pipelines for Computation of ΕΛμν

However, this simple replication of the pipeline leads to inefficiencies: different
pipelines recalculate identical setup information (integrals, density matrices) needed
by other pipelines: in the above example the integral set μ ν + i and density matrix
ab+1 are each being setup twice. In order to avoid redundant computations, we reor
ganize the algorithm in terms of a grid of energy computations. Each block on the

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 89

grid represents a single two-electron computation, ΕΛμν, and a block's horizontal and
vertical locations identify the prerequisite integrals and density matrices. A complete
HAB calculation requires traversal of the entire grid. The key to efficiently using
integral and density matrix information lies in determining how to traverse the com
putational grid map, and how many grid locations to compute in parallel.

Truncated Wavefront The solution we have chosen sweeps a "wavefront" of two-
electron energy computations across the grid (Figure 3). At a particular step, the en
ergy calculations performed are (ab, μν-5) , (ab~l, μν-4) , (ab-2, μν -3) , —> (ab-5,
μν), where the pair indices correspond to the prerequisite density matrices and inte
grals, respectively. Concurrently, the ab+1 and μ ν + i setup operations are per
formed. The energy calculations are represented graphically by a diagonal wave-
front running from (ab, μν-5) to (ab-5, μν).

Density Matrices
ab-5 ab-4 ab-3 ab-2 ab-1 ab ab+1

Integrals

Figure 3: Wavefront Propagation

In the single pipeline (Figure 1) concurrent storage was required for only two
sets of integrals (μν and μ ν + 7) ^ two sets of density matrices (ab and ab+1). Un
fortunately, this is not the case for the wavefront scheme. As the wave progresses, all
previous information (indices 0 to ab+1 or μν+7) is required; only when an axis has
been completely swept is the setup information no longer necessary. This memory
requirement is a serious problem since large systems may require more memory than
is available. Truncating the wavefront is a simple solution. However, what is the
most efficient way to propagate the truncated wave while still visiting every location
in the calculation grid? One choice is propagating the wavefront along either of the
two axes. For example (see Figure 4), if we restrict the range of integral indices to
sets of three, we can propagate a wave of constant length three along the density

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

90 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

matrix axis. Completing the first sweep across the density matrices results in the
following contribution to :

3

μν=1<ώ (13)

Truncating the calculation^ wavefront has many benefits. In our example the
same integrals are used for the entire sweep along the density axis resulting in sig
nificant reuse of memory. Additionally, in a one-to-one mapping of the two-electron
calculations to processors, the propagation described requires no movement of the
integral buffers from processor to processor. As shown in Figure 4, processor one
has integral set one stored in its local cache for the entire propagation of the wave
along the density matrix axis. The same is true with processors and integral sets two
and three. Wavefront truncation also allows a degree of freedom for optimizing the
calculation: we can isolate the slowest setup step (reading the integrals in our exam
ple) and then perform this step least often by propagating along the other axis (the
density matrices).

Figure 4: Truncated Wavefront Propagation

The wave formalism allows a smooth transition as one sweep ends and another
begins. As shown in Figure 2, the seventh step, which would extend beyond the den
sity matrix indices, "wraps around", restarting at density matrix 1. The obvious al
ternative to the wave formalism, a "vertical scan", does not allow for this smooth
transition. The vertical scan would calculate Εαμν for μ ν = 1 to 3, ab = 1 while set

ting up ab = 2, and so on. When calculating ΕΛμν for μν = 1 to 3, ab = 7 (the final
calculation of the row), the next setup required would be μν = 4 to 6 and ab = 1,
which would result in a less efficient use of memory (storage for six integral buffers
required rather than four) and more setup operations to perform, possibly reducing
the number of processors in the calculation pool.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET A L Hartree-Fock and GVB Wave Functions 91

Load Balancing For the algorithm to run efficiently, we would like to minimize in
ter-processor communication and make continuous, non-redundant use of all avail
able processors (load balancing). Even though inter-processor communication is im
plicit (i.e., data moves upon memory access) on a shared memory multi-processor, it
is still costly. We have already mentioned how either integrals or density matrices
can be reused by choosing the wavefront direction. Additionally, the choice of wave-
front direction also assists in load balancing.

However, more flexibility for balancing between the three processor pools is
gained by performing a composite of energy component calculations at each grid lo
cation, rather than a single energy calculation. Specifically, we group the single en
ergy calculations into larger, square blocks, with a length of B, to be determined later;
these blocks are then used as the basic unit for the truncated wavefront (Figure 5).
Although there will not necessarily be a one-to-one mapping of blocks to processors
in most calculations, the arguments presented in favor of this organization still hold
(minimal inter-processor communication and load-balancing).

Figure 5: Truncated Wavefront Propagation, Using Blocking

The block length, B, is another degree of freedom which allows load balancing
between the processor pools. The number of energy calculations per time step varies
quadratically with B, since each block represents B 2 calculations. In contrast the
number of setup operations varies linearly, since there are only Β per block. Thus, by
varying the blocklength, the algorithm can regulate the ratio of energy calculations to
setup operations performed for each timestep. This regulation will ultimately be
based on live timings of each sub-task.

The desire for no idle processor pools requires that the setup time per time-step
is equal to the calculation time per processor per time-step; thus, each processor will
complete its task at the same time as all others. One (or sometimes two) processors
are dedicated to the setup group. To determine the two-electron calculation time per
processor an expression for the total two-electron calculation time is required. The
total number of integrals and density matrices stored, M, (assumed to be the same) is
determined by the size of the available internal memory. M/B integrals and M/B

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

92 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

density matrices can thus be stored (where Β is the blocklength). Recalling that one
group in memory is dedicated to the setup, we find (M/B) -1 active blocks, giving:

two-electron calculations per timestep. If the number of processors on the machine is
nproc, the following is true:

as one processor is devoted to the setup. Equation (15) is then solved for B. Ulti
mately, the algorithm will use live timing data for dynamic load-balancing; currently
the timings are approximated based on machine specifications.

It is also important to know how the complete calculation will scale as we vary
the number of processors. To do this, it is necessary to find an expression for the to
tal calculation time. We know the ideal time for each step, the expression given
above, and need only to determine the total number of steps a complete calculation
requires. If there are Τ calculations to perform for a complete calculation, and B(M-
B) calculations per step, there are Τ / (B(M-B)) steps for a complete calculation.
Thus, the total calculation time is

and we find that the total calculation time should scale inversely with the number of
processors. This expression is somewhat unusual since there is no explicit depen
dency on the setup operations; there is only an implicit dependency in the decrease of
the number of processors available for the calculation. As the number of processors
increases, this factor should be negligible, allowing optimal parallelization.

Program Architecture

The following describes the important internal characteristics of our program. We
introduce here some of the software techniques that have proven useful.

C++ Programming Language Although far from being a standard in computational
quantum chemistry, C++ allows easy organization of the program due to a natural
mapping between standard chemistry concepts and computer code. The major data
structures in our program are implemented as C++ classes or "objects". Objects are
an encapsulation of data with associated algorithms or methods for manipulating that
data. Many chemical concepts can be described naturally as objects and hierarchies
of objects. For example, molecules can be thought of as data (atoms, basis sets,
atomic coordinates), plus algorithms (basis set manipulations, coordinate transforma
tions); in a likewise manner the component atoms in the molecule can also be de
scribed as objects. A high-level object in our program is the ResCalc object, which is
used to organize the data (molecules, wave functions) and implement the dgorithms
(biorthogonalization, two electron energy contribution) needed for the resonance cal
culation. The natural mapping between chemical and program objects clarifies logic
of the program and the structure of the data.

(14)

Setup time =
B(M - B) * Two - electron c alculation time

nproc -1 (15)

T* Two - electron c alculation time
nproc -1 (16)

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 93

The Tel Interpreter When designing the user-interface, it is desirable to maximize
the amount of information a user can extract from the program. Additionally, the
user should have a significant level of control over each important algorithm within
the program. To accomplish this flexibility each major C++ object was provided
with an interface to the command language that drives the program, the Tool Com
mand Language (Tel) (9).

Tel is an embeddable and extensible command interpreter; it is embeddable be
cause the interpreter is linked into our program and extensible because the native
command set of the interpreter can be augmented by C/C++ code. Tel provides a
mechanism by which a text stream is interpreted while our code provides the imple
mentation necessary for the commands. The Tel language is simple, yet powerful
enough to surpass the capabilities of most specialized "macro" languages used in
computational chemistry codes. Tel includes loops, conditional expressions, and
variables. The main loop of our program consists of collecting input characters
(either from a script file, a TCP/IP socket connection, or an interactive command
line) and passing them into the Tel interpreter.

Tel Enabled Objects One of the most important Tel commands that we have im
plemented is "new"; this command allows users to instantiate one of the chemical
C++ objects. For example, to load a molecule, the user enters the command new
Molecule <molecule name>. Once instantiated, a new chemical object provides ad
ditional Tel commands having a nearly one-to-one correspondence with the methods
provided by the underlying object. In the molecule example, there are commands for
loading the molecular structure, loading wave function coefficients, extracting basis
set overlap matrices, etc. We refer to these objects as Tcl-enabled objects, as they are
C++ objects available at the user-level.

As a result of Tcl-enabling all important C++ objects, the user can instantiate,
access, and control all of the major data structures and algorithms in the program.
This enabling allows an unprecedented flexibility in constructing a calculation and
inspecting its results. A few examples illustrate this point. Suppose the user wishes
to construct an electronic state from a superposition of two wave functions, whose
coefficients are stored on disk, and use the resulting wave function in a resonance
calculation. Using the commands available to the Tcl-enabled Molecule object, the
two wave functions can be loaded; their coefficients extracted to Tcl-enabled Matrix
objects; these Matrices manipulated using standard linear algebra techniques; and the
resulting Matrix returned back to a Molecule object. The modified Molecule object
is then used in the resonance calculation. This is accomplished by the user without
modifications or additions to the program.

As another example, consider the task of reading a wave function from a source
not currently supported by the resonance program. For most programs this would
require additional code to be linked into the program to support the new file format.
However, using Tcl-enabled objects and text processing capabilities built into stan
dard Tel, the user can write a script to import foreign file formats directly into the
Tcl-enabled Molecule object without needing to recompile and relink the program.

The use of Tel and Tcl-enabled C++ objects has proven extremely useful during
normal use and debugging as well. Because of the high degree of access to internal
data structures and algorithms, many tests could be performed at the script level dur
ing debugging. For example, at a point where wave functions should be biortho-
gonalized, a debugging script can easily extract the wave function coefficients to Tcl-
enabled Matrix objects, compute the overlap matrix, and check for a diagonal matrix.
We found debugging time to be greatly decreased by reducing the need to install di
agnostic print statements and reducing the need for recompiling and relinking.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

94 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Results and Discussion

A l l timing results reported come from calculations performed on a Silicon Graphics
4D/480, with eight 40 MHz R3000 processors. The system contains 256 Mb of
shared internal memory. We chose two large problems of chemical interest to use for
timing tests. The first, calculating the resonance energy of the cyclopentadienyl an
ion (C5H5", Cp), involves a five valence-state calculation where each state has three
GVB-correlated pairs (perfect-pairing model) and each state localizes the negative
charge on a different carbon atom. The second problem is the calculation of the
resonance energy for the molecule l,6-didehydro[10]annulene (C 1 0 H 6) , a ten mem-
bered ring that formally meets the Huckel criteria of (4n+2) π-electrons for aro-
maticity. The π-valence structure can be written as a resonance between two sets of
five π-bonds:

This system is of interest for understanding the activity of enediyne antitumor antibi
otics (10). Both calculations were beyond the limits of older programs and thus pre
sented fresh opportunities for our program.

The timing data presented represent the elapsed time to completion for each run.
Ideally, this time should be related to the number of processors by the following rela
tionship:

j . . X T time on a single processor
total execution time on Ν processors = 2 —

Ν (processors) çyj^

Figure 6 presents the timing results. As one of the processors is always devoted
to a setup operation, the effective number of processors devoted to the parallel two
electron energy calculation is nproc - 1 (equation 16). The x-axis represents the
number of processors devoted to this parallel two-electron energy calculation, and the
y-axis represents the speedup in total elapsed time. The scatter in the data is a result
of running the program on an otherwise heavily loaded system. We were able to
assure our program ran at a high priority by using Nanny (11); nevertheless, these
background jobs still had a slight effect on our run times, probably due to I/O
contention and extra context switching. Because of the other jobs on the system, and
the fact that our runs could not have perfect utilization of the desired processors, we
present in Figure 6 execution time speedups scaled to 100% utilization of the desired
processors, to maintain constancy amongst the data.

Note that the Cp case begins to exhibit leveling off as the number of processors
is increased, while the C 1 0 H 6 case still exhibits linear speedups. The Cp case is much
smaller than the C 1 0 H 6 case, and we believe that its smaller size causes it to begin dis
playing non-linear speedups more rapidly than the larger C^Hg case. While this phe
nomenon is not desired, it is acceptable, as the larger cases are the ones for which
greater speedups are needed.

Based on these results, we expect the speedups will scale well to larger numbers
of processors. Recent results on distributed clusters of workstations support this

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 95

projection(i2). We are in the process of porting the program to a 64 processor KSR
computer where additional tests can be made.

6

5

§" 4

2

1
1 2 3 4 5 6

SGI R3000 40 MHz CPUs

Figure 6: Effective Numbers of Processors vs.
Elapsed Time Speedups Scaled to 100% utilization

The values of HAB, H^ , and SAB for Cp and C 1 0 H 6 are shown in Table I (note that
HAB, HAA are purely electronic energies; the nuclear repulsion energies are not
included). For Cp the values are for the matrix elements between the specified
charge localizations, either the 1-2 interactions (ortho) or the 1-3 interactions (meta).
Solution of the secular equation for Cp leads to an EAB of -192.185956986 hartree for
the total wave function, compared to the single state energy of -192.17354519 hartree
(both energies include nuclear repulsion terms).

Table I: Resonance Matrix Elements and Overlaps for C 1 0 H 6 and Cp.

Resonance Interaction H^ (hartrees) H^ (hartrees)

C 1 0 H 6 -510.092102693 -796.224965290 0.640594
Cp-ortho charges -330.798477408 -342.951275455 0.965792
Cp-meta charges -336.133480369 -342.951275455 0.981394

Advances in ab initio techniques and computers have led to the efficient
calculation of larger and larger HF and GVB descriptions of molecules. The ability to
rapidly calculate resonance matrix elements for these large systems provides a way to
study resonance and electron transfer problems with more rigor than previously
feasible. The ability to use chemically intuitive basis states may help lead to a better
understanding of the important energetics in electron transfer and other resonance-
related problems.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

96 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Literature Cited:

1. Jackes, C. F.; Davidson, E. R. J. Chem. Phys., 1976, 64, 2908.
2. Voter, A. F.; Goddard, W Α., III J.Chem. Phys., 1981, 75, 3638.
3. Unpublished programs, A. F. Voter, J. M. Langlois.
4. Bobrowicz, F. W.; Goddard, W. Α., III in Methods of Electronic Structure

Theory; Schaefer, H. F., III, Ed.; Modern Theoretical Chemistry, Vol. 3; Plenum
Publishing Corp.: New York, NY, 1977; pp 79-127.

5. Goddard, W. Α., III; Ladner, R.C.J. Am. Chem. Soc, 1971, 93, 6750.
7. Hunt, W. J.; Hay, P. J.; Goddard, W. Α., III J. Chem. Phys., 1972, 57, 738.
8. Voter, A. F. Thesis, California Institute of Technology, 1983.
9. Ousterhout, J. K., Tcl and the Tk Toolkit, Addison-Wesley: Reading MA, 1994.
10. Myers, A. G.; Finney, N. S. J. Am. Chem. Soc, 1994, 116, 10986.
11. Nanny CPU-time balancer, Parallelograms, P.O. Box AA, Pasadena, CA 91102,

info@pgrams.com.
12. Bierwagen, E. P.; Coley, T. R.; Goddard, W. Α., III "Ab Initio Stuies of Electron-

Transfer Rates Using Distributed, Parallel Computing", Talk presented at 1994
ACS meeting, Washington, D. C.

RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 8

Promises and Perils of Parallel Semiempirical
Quantum Methods

Kim Κ. Baldridge

San Diego Supercomputer Center, P.O. Box 85608,
San Diego, CA 92186-9784

The application of semiempirical quantum mechanical procedures on
Multiple-Instruction-Multiple-Data (MIMD) parallel computers is found
to be a challenge. Key computations in these large scale quantum
chemistry packages is the determination of eigenvalues and eigenvectors
of real symmetric matrices. These computations arise in both geometry
optimization as well as vibrational analyses, and, typically consume at
least half (most, in the latter case) of the total computation time. This
work illustrates the parallelization of both tasks within MOPAC. The
application of the parallel code is demonstrated on several key molecular
systems.

Utilization of computationally derived chemical and physical properties has vastly
enhanced the success of experimental ventures into the creation of designer molecules
of technological and medicinal importance. Rational drug design and novel
nanomolecular materials would be complete fantasies if not for the atomic scale insight
provided by computational chemistry. Because of the high demand for pharmaceuticals
and composite materials to display a special uniqueness of action or efficiency in
response, the tightness on specific structural tolerances and hence the degree of
complexity in these molecular blueprints are increasing at a rate only manageable by
advanced computing methods (e.g. massive parallelization, or ultrafast vectorization).
Despite the extraordinary abilities of modern hardware technology and coding methods
to manipulate the raw data, the rate limiting step in harmonizing the intricacy and
precision required to push forward these chemical frontiers ultimately comes down to
the optimization of the complex computational methodologies on state-of-the-art
hardware platforms.

There are currently three commonly employed theoretical methods for the study
of the properties of molecules: Molecular Mechanics; Ab Initio; Semiempirical. (Figure
1).

0097-6156/95/0592-0097$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

98 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 1.

Computational Chemistry
Methodologies

Schematic showing the relationship between theoretical method
and size of molecular system.

It has been well-established that quantum mechanical methods based on Hartree Fock
(HF) theory provide a successful and thoroughly tested framework for molecular
calculations (7-2). There are, however, major limitations in the size of molecular
systems that can be reasonably calculated on the available hardware. Computational
costs and complexity of solving the large iterative eigenvalue/eigenvector systems
associated with the theoretical methods become quite demanding (3). Even the fastest
computers have limitations on the size of molecular systems that can be solved due to
CPU time, memory, and disk space requirements. At present, the upper limit is about
1000 basis functions (Basis functions are mathematical functions which represent
atomic orbitals, as in descriptive organic chemistry. The number of basis functions
used in a calculation of a particular molecule determines the level of accuracy of that
calculation, and forms what is called a basis set), which corresponds to less than 40
first row atoms at a modest level basis set, i.e, about a tetrapeptide. On the other hand,
molecular mechanics and molecular dynamics techniques are extremely fast empirical
methodologies which are able to handle very large molecular systems, such as entire
enzymes with over 100 peptide residues. These methods sacrifice in generality and
accuracy. In addition, they are not parameterized for other than ground state systems,
and are unable to adequately represent geometries involved in bond-making/bond-
breaking processes.

Between Hartree Fock methods and empirical-based methods are semiempirical
methods. Like ab initio methods, they are basically quantum mechanical in nature, the
main difference being that the semiempirical methods involve additional approximations
based on experimental data, thus simplifying the calculations considerably.
Semiempirical methods are right on the verge of becoming of routine use in polymer
and biochemical applications. The major constraint, despite the numerous
methodological advances in past years (4-8) is that the size of chemical systems that can
be analyzed, is largely a fonction of available single-processor computer power.
Although this power continues to increase in magnitude, it cannot continue to improve
at a rate that keeps pace with the desires and expectations of the scientific community.
Parallel architectures promise to make calculations of this size more of a reality.
However, only recently has it been realistic to turn towards the parallel computing
environment for any of these types of calculations (9-72) primarily due to the fact that
new distributed-memory algorithms that utilize the architectures of the parallel platforms
must be developed.

This chapter focuses on the promises and concerns of applying parallel methods
to semiempirical calculations for the solution of problems that are currently not possible
with either ab initio or parallel ab initio methods (13-18) and with an accuracy greater

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 99

than that achievable with the molecular mechanics and dynamics type procedures. The
conversion and performance evaluation of the semiempirical quantum chemistry code,
MOPAC (19-21) on the Intel iPSC/860 and Paragon platforms will be demonstrated.

Semiempirical Quantum Methods

The primary goal of quantum chemical codes is to solve the molecular Schrodinger
equation (22-25). This involves the solution of the generalized eigensystem

A xi = λΐ xi

where A is a given η χ η real symmetric matrix, and (λ[, x[) is one of η
eigenvalue/eigenvector pairs to be determined. The solution of this eigensystem
provides the molecular wave function, from which a total description of the molecule,
including all molecular properties such as equilibrium geometry, dipole moments,
energetics, kinetics, and dynamics is obtained. The applications programs (26-28) for
these theories are typically large and complex, and large real symmetric eigenproblems
(29-35) arise in various options, notably self-consistent field (SCF) (36) computations
and molecular vibration analysis.

In SCF computations, A is typically the matrix representation of the Fock
operator with respect to a given set of basis functions (atomic orbitals). The eigenvalue
λί is an energy level corresponding to a molecular orbital represented as a linear
combination of basis functions (atomic orbitals), with the components of the
eigenvector xi as the basis function coefficients. The matrix dimension η is the number
of basis functions used in the computation, which varies roughly with the number of
electrons in the molecule and the desired accuracy of the molecular orbital function
representation. Values of η on the order of a few hundred are easily reached in even
moderate-sized systems with several heavy atoms.

The SCF computation is iterative in nature, as the Fock operator depends on its
own eigenfunctions, and the Fock matrix is usually constructed from the orbitals
computed on the previous iteration. Thus, a sequence of eigensystems must be solved
until convergence is attained. Moreover, the SCF iteration often is the inner iteration in
a geometry optimization in which the nuclear coordinates are optimized with respect to
energy. Thus, a single geometry optimization for a molecule with even a few heavy
atoms (light atom refers to hydrogen; heavy atom refers to all other types) may require
the solution of hundreds of large real symmetric eigensystems.

In vibrational analyses, the matrix A is the Hessian of the energy with respect to
the 3*N - 6 (N = number of atoms in the molecule) degrees of vibrational freedom in
the nuclear coordinates. The eigenpairs (λί, xi) determine vibrational frequencies and
corresponding normal modes. The vibrational eigensystems are usually dimensionally
somewhat smaller than in the SCF case, but again they may need to be solved
repeatedly, for example, as part of a reaction path following computation.

In ab initio SCF computations, the matrix element computations involve the
evaluation of up to 0(n 4) floating point operations for the evaluation of Coulomb and
Exchange (interaction) integrals, whereas the solution of a single eigensystem is 0(n$)
(i.e. evaluation of the integrals dominate the computational effort). In semiempirical
techniques, an approximate Hamiltonian is used so that the number of calculated Fock
matrix elements is greatly reduced. These methods are based on the assumption that
only electrons on the same atoms have significant interaction energies; all others are
represented via experimental parameters. This reduces the calculation of integrals to

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

100 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

0(rfi) and thus, solution of the eigensystem becomes the primary computational effort.
MOPAC supports four semiempirical Hamiltonians: MNDO (37), MNDO/3 (38), A M I
(14), and PM3 (39). These are used in the electronic part of the calculation to obtain
molecular structures, molecular orbitals, heats of formation, and vibrational modes.
The advantages of semiempirical over ab initio methods are that semiempirical methods
are several orders of magnitude faster, and thus calculations for larger molecular
systems are possible by using one of these semiempirical Hamiltonians. The reliability
of these methods in predicting accurate geometries and heats of formation has been
demonstrated in many applications (40-42)

Parallel MOPAC: Structure and Task Distribution

M O P A C is public-domain software available through QCPE (43). Version 6.0 of
M O P A C runs on V A X , C R A Y and workstation platforms, and consists of
approximately 50,000 lines of FORTRAN code, in 190 subroutines. Resident memory
usage in M O P A C is governed entirely by parameter settings chosen at compile time.
The amount of storage required by MOPAC depends on the number of heavy (non-
hydrogen) and light (hydrogen) atoms that the code has been parameterized to handle at
compile time, and whether configuration interaction capabilities are incorporated.

Hardware performance monitoring (44) (HPM) indicates that the majority of the
computational time required to run MOPAC is divided among evaluating the electronic
interaction integrals (Hartree Fock matrix preparation), calculating first derivatives
(geometry optimization procedure), calculating second derivatives (vibrational analysis)
and solving the resulting eigensystem (diagonalization). (Figure 2).

Figure 2. Pie charts illustrating the distribution of tasks for a representative
geomery optimization and vibrational analysis calculation.

The precise division of CPU time among the tasks for a geometry optimization
procedure may vary with molecular composition (Timings indicate that diagonalization
can represent from 40-80% of the total computational load, depending on molecular
construction); however, the general procedures which dominate the work load for the
total calculation will remain the same. In general, semiempirical methods process N ^
integrals instead of N ^ as with conventional HF methods, therefore, the computational
bottleneck lies at the diagonalization routine, giving an overall N ^ time dependence.
The SCF calculation, geometry optimization, and second derivative evaluation
(vibrational analysis) for the available Hamiltonians were parallelized in this work.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 101

The parallelized algorithms were implemented on a 64-processor Intel iPSC/860
hypercube, and subsequently on an Intel Paragon; both distributed-memory, message-
passing parallel computers. In the Intel hypercube, each processing node contains an
Intel i860 CPU and 8 Mbytes of R A M (16 and 32 Mbytes/node on the Paragon). The
communication links are through Intel's Direct-Connect Communications (DCM)
hardware with a 2.8 Mbyte/sec maximum bandwidth for the iPSC/860 and 10-12
Mbytes/sec on the Paragon. (The band width on the Intel Paragon is widely variant
depending on the system configuration; potentially, one could see a value as high as 4-5
times this.)

Geometry Optimization Component

As prompted by profiling techniques, detailed inspection of the algorithmic format of
M O P A C shows that most of the computational work in the semiempirical geometry
optimization procedure is distributed over the following three tasks:

1) Evaluation of one- and two-electron matrix elements.
2) Formation of the Fock matrix and diagonalization.
3) Evaluation of derivatives.

Sequential bottlenecks are the limiting case of poor load balancing. Of primary
concern in choosing a parallel scheme is to ensure that some processors are not sitting
idle awaiting results of others. Three basic techniques were considered in the
parallelization of MOPAC (Table I): domain decomposition, control decomposition
and statistical decomposition. In domain decomposition, the domain, or data, to be
dealt with is a set of rectangles, η in number. Since every rectangle is the same amount
of work, we send n/p rectangles to each of ρ processors. Theoretically, nearly perfect
load balancing can be obtained using this method.

More often, the data can not be easily split into neat even packets of work. In
cases like these, one can employ control decomposition in which case a formula is
devised which approximately balances the work load across processors, based on the
type of computation that is being performed. Finally, statistical decomposition is a
parallel strategy for programs where the work load is dependent on the complexity of
the problem the user has specified at run time. In the specific case of quantum codes,
the work load involved in the calculation of the various types of integrals would, in
many cases, benefit from a statistical parallel decomposition. The following section
elaborates on the application of these decomposition schemes to MOPAC.

Table I. Parallel Decompositions

Decomposition Scheme Characteristic

Domain Domain (data) is a set of η rectangles, distributed over
ρ processors.

Control Domain is distributed in uneven packets to ρ processors.

Statistical Domain is distributed according to complexity of run
time problem.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

102 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

1) Evaluation of one- and two-electron elements. Geometry optimization
begins with a call to a controller for the specific optimization method. This routine
makes several calls to subprograms to carry out the various aspects of full optirnization.
Much of the calculation occurs in setting up the Hamiltonian matrix (Scheme I: Task 1,
Loop over ATOMS). The resulting matrix elements are used to calculate the SCF heats
of formation, the nuclear energy, and the one- and two-electron interaction integrals.
MOP A C is based on a semiempirical approach, therefore, many of the integrals are
ignored, others are calculated using experimental parameters stored in common blocks,
and a few are calculated fully.

The computation of the one-electron and two-electron integrals has been
distributed over nodes by partitioning the number of atoms over nodes and giving each
node an independent number of integrals to calculate. In general, 100 integrals are
calculated for each heavy atom - heavy atom interaction, 10 integrals for each heavy
atom - light atom interaction, and 1 integral for each light atom - light atom interaction.
Ideal load balancing can be achieved by splitting up the integrals in accord with the type
of interaction so that each node receives approximately equal work to do, i.e. statistical
decomposition.

Because each two-electron integral contributes to several Fock matrix elements,
it is necessary to have the independent node results collected before the Fock matrix is
created. A way around this is to have each processor work on its own partial Fock
matrix, which is gathered once at the very end. The construction of MOP A C makes
this more difficult, but is currently being investigated.

2) Formation of Fock matrix and Diagonalization. The formation of the Fock
matrix involves computation of the remaining contributions to the one-center integrals,
and the two-electron two-center repulsion terms. Each of these subtasks is split over
nodes in accord with the number of atoms (Scheme I: Task 2a, Loop over ATOMS).
Once this is done, the density matrix can be computed along with information about
orbital occupancy. This task is distributed over nodes in accord with the number of
orbitals (Scheme I: Task 2b, Loop over ORBITALS).

MOP A C employs a combination of techniques for complete diagonalization. A
"fast" or pseudo-Jacobi diagonalization procedure is invoked in initial SCF iterations.
The diagonalizations during the final SCF iterations are then taken over by a more
rigorous QL algorithm (45-49).

Typically, a diagonalization method consists of a sequence of orthogonal
similarity transformations. Each transformation is designed to annihilate one or more
of the off-diagonal matrix elements. In the case of the Jacobi method, successive
transformations then undo previously set zeros, but the off-diagonal elements continue
to decrease until the matrix is diagonal to the precision of the machine. Accumulating
the product of eigenvector transformations gives the matrix of eigenvectors, and the
elements of the final diagonal matrix are the eigenvalues. In general, the QL (QR if the
matrix is reversed graded) algorithms are much faster than the Jacobi methods,
however, the Jacobi methods can be computationally time-favorable relative to QL if a
good initial approximation is available, and only a single Jacobi-sweep is done.

MOP A C replaces the full QL eigensolution by a single Jacobi-like sweep of just
the occupied-virtual block for intermediate SCF iterations often with considerable speed
enhancements (50). The algorithm is considered a pstudo-diagonalization technique
because the vectors generated by it are more nearly able to block-diagonalize the Fock
matrix over molecular orbitals than the starting vectors. It is considered pseudo for
several reasons (3), the most important of which is that the procedure does not generate
eigenvectors. In the chemical sense, the full orbital matrix representation is not
diagonalized, only the occupied-virtual intersection is. A l l of the approximations used
in this pseudo-diagonalization routine become valid at self-consistency, and further, the
approach to self consistency is not slowed down (57).

Given the lower half triangle of the matrix to be diagonalized in packed form,

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 103

the algorithm has three primary loop sequences that constitute the procedure (Scheme I:
Task 2c, Loop over VARIABLES). The first two loops together perform the similarity
transformation

V*FV

that transforms from the atomic orbital to the molecular orbital representation (F
represents the Fock matrix). This representation ensures that the resulting eigenvectors
are orthogonal, spanning the N-atom dimensional space. This step is followed by
rotation, which eliminates off-diagonal elements. The matrix is then block diagonalized
only, because only Fock elements connecting occupied and virtual orbitals must be zero
at convergence.

Two methods of parallel decomposition were investigated for the
diagonalization procedure. The initial attempts distributed the work load over rows or
columns of the matrix, i.e., control decomposition. This method resulted in timings
that were actually significantly slower than the original unparallelized routine. This is
due to large communication overhead from processing such small amounts of data. In
addition, two utility routines were written to establish each node's starting work load
position. Calls to these routines, along with additional global calls to gather and
broadcasts to announce individual node data, resulted in extreme overhead costs.

To avoid some of the complications of the above, a domain decomposition was
employed. In this method, large groups or blocks of the matrix are distributed over
nodes. Parallelization in this manner eliminates the need for broadcasting intermediate
results. Only the final computed vectors are gathered via a global routine.
Broadcasting of intermediate results is no longer necessary and scratch arrays already
available are used for parallel decomposition so that no additional memory is required
for this parallel method.

3) Evaluation of derivatives. Additional CPU-intensive subroutines involved
in the geometry optimization include those that carry out derivative evaluation (Scheme
I: Task 3). The derivatives of the energy with respect to the internal coordinates is
done via finite differences. The total work involves 3*N variables that can be
distributed equally over the number of nodes.

Vibrational Analysis Component

Vibrational analysis (second-derivative evaluation) of molecular systems can be a
formidable task. These calculations are, however, essential to characterize stationary
points and to assess vibrational and thermodynamic properties of molecules. The
vibrational analysis procedure involves construction of a 3*N dimensional matrix of
second derivatives of energy with respect to Cartesian coordinates (Scheme Π). The
calculation of each of these matrix elements represents an independent calculation, and
the procedure holds the potential of being perfectly parallel. Following the calculation
of matrix elements across nodes, the results are collected using a global routine and the
full matrix diagonalized.

The diagonalization of the matrix results in a set of eigenvectors, corresponding
to the 3*N-6 vibrational motions, and a corresponding set of eigenvalues, which
represent the respective vibrational frequencies of these motions. The other 6
eigenvectors correspond to the rotational and translational motion, with associated zero
eigenvalues (disregarding numerical artifacts).

Scheme Π shows the vibrational analysis procedure. The parallelization of the
vibrational analysis component requires partitioning 3*N variables over nodes to
calculate a matrix of second derivative elements. Because this is a symmetric matrix,
there are 3*N*(3*N +l)/2 unique elements to be computed. It is critical to maintain
proper indices over the nodes as the results are calculated. A global routine is invoked
to collect the matrix in preparation for diagonalization.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

104 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

SCHEME I: Parallelization of Geometry Optimization

Specific Loop Sequence
Task

Loop according to SCF criteria (COMPFG)
1 =>Evaluation of Hamiltonian matrix elements (HCORE)

Loop over total number of ATOMS
* fill 1 e- diagonal/off diagonal of same atom
* fill atom-other atom 1 e~ matrix (H1ELEC)
* Calculate 2 e~ integrals

Calculate e" - nuclear terms (ROTATE)
Calculate nuclear-nuclear terms

Merge 1 electron contributions private to each CPU
2 ==>Formation of Fock matrix and Diagonalization (ITER)
2a Loop over number of ATOMS

* remaining 1 e- elements (FOCK1)
* 2 e-/2-center repulsion elements of Fock matrix (FOCK2)

2b Loop over number of ORBITALS
* density matrix (DENSIT)

2c Loop over matrix BLOCKS
Diagonalization (DIAG)

* Construct part of the secular determinant over MO's
which connect soccupied & virtual sets.

* Crude 2x2 rotation to ''eliminate'' significant elements.
* Rotation of pseudo-eigenvectors.

Merge contributions private to each CPU
3 ==>Evaluation of Derivatives (DERTV)

Loop over number of ATOMS
* derivatives of energy w.r.t. Cartesians (DCART)

Loop over number of VARIABLES
* Jacobian: d(Cart)/d(internals) (JCARIN)

Merge derivatives private to each CPU

SCHEME Π: Parallelization of Vibrational Analysis

Calculation of force constants and vibraional frequencies (FORCE)
Loop over number of VARIABLES

* Calculate second-order of the energy with repect to
the Cartesian coordinates (FMAT)

Merge second derivative components private to each CPU

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 105

Results

Code performance was demonstrated on a large group of molecules (52) varying in
symmetry construction and heavy atom/light atom ratios; only a few of these molecules
are presented here to illustrate the general trends. Although a principal performance
measure is the elapsed time necessary to solve the problem of interest, speedup shows
more clearly the behavior of a parallel program as a function of the number of
processors. Speedup is defined as the wall-clock time to run on 1 processor, divided
by the time to run on ρ processors. For a perfectly parallelized code, speedup equals
the number of processors. Single processor timings are taken as the best serial
algorithm (In this case, timings for serial and parallel M O P A C on one node are
identical, due to the particular method of parallelization.).

The parallel procedures were first implemented on the Intel iPSC/860, and
subsequently on the Intel Paragon, at the San Diego Supercomputer Center. Since the
iPSC/860 had only 8 Mbyte nodes, the molecular constitution was limited to less than
20 heavy atoms. In general, code performance is identical on both platforms with the
exception of a 25% faster clock in the Paragon, thus shifting the resulting curves by the
appropriate amount. The geometry optimization and vibrational analysis computations
are illustrated for corannulene, which has 20 carbon and 10 hydrogen atoms (Figures 3
and 4). One notices from these curves that, because of the faster clock in the Paragon,
the workload per node is done faster, but the general trends are virtually identical.

A l l molecules investigated serve as prototypes for the classes of molecules that
we intend to study computationally for these types of methods. These include
prototypes for aromatic carbon materials based on graphitic or fullerene motifs,
prototypes for strained polycyclic hydrocarbon-based "energetic" materials, and
prototypes for pharmacophores and bioreceptor substrates. For detailed discussion of
Paragon performance, three molecules from the total set were chosen: norbornyne
cyclotrimer, taxol derivative, and lophotoxin (Figure 5).

Calculations were performed on node combinations up to approximately 128 32
Mbyte processors. Optimization level 3, which incorporates global optimization and
software pipelining, was invoked during code compilation. Speedups approaching 5
and absolute Intel speeds of about half that of the C R A Y C90 were obtained. Figure 6
shows a plot of CPU time versus number of processors for these three molecules. One
finds a definite compartmentalization of data with respect to optimal number of
processors for specific number of atoms in a molecular system. This graph shows an
optimal performance of 64 nodes for the molecules considered, which range from 45-
60 atoms. Scanning the entire data base of molecules (20) shows the general rule of
thumb.

Number of nodes
Number of atoms, η at optimal performance

>29 64
15 < η < 30 32
9 <n<16 16

< 10 8

Running the calculation on more than this optimal number of nodes will be inefficient
due to either a very small distribution of work across nodes, or some nodes being left
completely idle. In some cases, performance is degraded due to the fact that the
communications costs start to dominate due to many nodes transferring very small
amounts of data. This is clearly seen in the performance plots of corannulene from the
Paragon.

Although the overall speedup appears inefficient for geometry optimization,
individual task speedups illustrate the promise of parallelization. Figures 7 and 8 show
the breakdown over the three tasks parallelized for lophotoxin and the taxol derivative,

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

106 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 3. Bar chart comparing the performance of the iPSC/860 and
Paragon or the geometry optimization of corannulene.

Figure 4. Bar chart comparing the performance of the iPSC/860 and
Paragon for the vibrational analysis of corannulene.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

BALDRIDGE Parallel Semiempirical Quantum Methods

Lophotoxin

Figure 5. Molecular structures.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

108 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 6. Speedup curve illustrating the variation in speedup with number of
processors for a geometry optimization calculation for norbornyne
cyclotrimer, taxol derivative and lophotoxin.

Figure 7. Bar graph showing the effects of parallelization of the various tasks
involved in the geometry optimization calculation for the taxol
derivative.

Figure 8. Bar graph showing the effects of parallelization of the various tasks
involved in the geometry optimization calculation for lophotoxin.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 109

respectively. The parallelization of the derivative routine is the most impressive,
approaching a speedup factor of 25, while that of diagonalization and formation of
matrix elements lag around 10 and 5, respectively. Geometry optimizations that
involve a diagonalization task that is closer to 80% of the total time will obviously give
much more impressive results. Notice especially, the decay of the calculation of the
matrix elements after about 8 nodes. This task is generally the smallest effort of the
three tasks, and, for the size of molecules considered here, does not have enough of a
workload to keep more than about 8 nodes busy, before communication costs
supersede work time.

Timing results for the parallelized vibrational analysis procedure are very
encouraging. For all molecules considered, the C R A Y speed is in the range 16-32
Mflops. The Intel results on the other hand approach or, in the case of lophotoxin,
exceed 200 Mflops. The vibrational calculations show nearly linear speedups for all
sizes of molecules. As the work is distributed over more and more nodes, efficiency is
lost, especially noted for very small molecules. One factor contributing to this loss is
that there is less and less work to distribute over nodes. This is why the larger
molecules show better performance than the smaller molecules. In addition, a latency
effect could be contributing to a decrease in efficiency due to more nodes being
involved in the global calls; this effect is uniform over all sized molecules. The
speedups for the three molecules considered here clearly show a linear trend (Figure 9).
The results are fairly uniform for molecules of similar size, because the primary task in
any particular molecule is the calculation of 3N (N=#atoms) second derivatives of
energy with respect to coordinates.

An important issue here is the range of problem sizes for which the performance
is acceptable. Keeping the number of processors fixed and increasing the problem size
increases the amount of local computation each node does, therefore, performance is
expected to improve for larger molecular systems. This is illustrated in Figures 10 and
11 for 64 node results over the entire range of molecules for geometry optimization and
vibrational analysis, respectively. Similar curves are obtained for the other node
combinations.

Discussion

A major limitation on performance, particularly for the geometry optimization
calculations, is the code memory requirement. Even for the largest molecules
calculated, there is a noticeable asymptote in the speedup curve as the number of nodes
increases. This is primarily because the molecular systems are relatively small in
comparison to the number of nodes being allocated to do work, a restriction resulting
from the memory constraints. The main problem in MOP A C stems from the rather
poor structure of the code in terms of memory utilization. The use of replicated data
parallel decomposition requires sufficient memory be held on each processor for the
entire symmetric Hamiltonian and Fock matrix. As a result, all internal
communications throughout parallelized MOPAC are carried out with fast-library global
routines and not via sending/receiving packets of information. This method of
parallelization was chosen in order to minimize the communication overhead and
latency costs, which were observed to be extremely high, especially with the first levels
of operating systems on the MIMD machines. There will still be startup time for these
global routines that will contribute to the overall time costs, however, this is much less
due to better algorithmic construction with global routines, and the fact that the global
routines are faster than the send/receive routines.

A second limitation, as noted for large biomolecular systems, is the instability
of the geometry optimization algorithms. If one tries to calculate the structure of a
large, floppy biomolecular system (i.e, > 100 atoms), there is a serious problem with
convergence due to the many torsional degrees of freedom. The semiempirical
algorithms that are currently available are not sensitive enough to instigate convergence.

Unfortunately, due to the severe memory and algorithmic constraints, the goal
of being able to calculate larger molecules than can be currently calculated with ab initio

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

110 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Vibrational Analysis

Figure 9. Speedup curve illustrating the variation in speedup with number of
processors for a vibrational analysis calculation for nobornyne
cyclotrimer, taxol derivative and lophotoxin.

MOPAC Geometry Optimization

Figure 10 Plot showing the increase in Mflop rate with increase in size of
molecular system for a geometry optimization calculation. The
molecules range in size from 8 atoms to 60 atoms.

MOPAC Vibrational Analysis

Figure 11. Plot showing the increase in Mflop rate with increase in size of
vibrational analysis calculation. The molecules range in size from
8 atoms to 60 atoms.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 111

techniques has not been met. The declining cost of semiconductor memory makes it
reasonable to assume that large-scale parallel computers will provide sufficient memory
per node to accommodate much larger molecules with the existing software. In
addition, memory need not be all semiconductor memory; one could think of employing
common file system disk storage to accommodate large intermediate information such
as integrals. Still, one will inevitably reach the limits of the increased memory
capabilities. Therefore, we are currently investigating both algorithmic modifications
and distributed memory capabilities. Distributed memory can potentially be handled
with system routines, which allocate appropriate memory at the onset of the problem,
or else hard coded dynamic memory using large fixed arrays in common with pointer
capabilities. Preliminary results by this author (current work involves M O P A C 7.0 on
the Intel Paragon and T3D platforms) as well as others (53) in this area show much
more promise towards the calculation of molecules of the size of hundreds of atoms.

Conclusions

With (MIMD) computers clearing the way for record-breaking computation speeds,
scientific programmers of the 90s are being pushed to the world of parallel
programming. Massively parallel processors achieve their high speed by working on
many parts of the problem in parallel. While it is difficult in many cases to structure a
problem for efficient highly parallel solution, for those problems for which the
technique is applicable, these computers are an increasingly important computational
tool, especially for large and difficult chemistry problems. Thus, it is clear that
implementing chemistry applications in parallel environments is a milestone for
computational chemistry.

In this work, we have demonstrated the promise as well as the difficulties
involved in the implementation of semiempirical quantum chemistry applications on the
Intel hypercube platforms. As the first level of implementation of these methods, we
have employed a replicated data parallelism strategy. In this strategy, even though
tasks are distributed over nodes, results of all distributed tasks are collected together on
each node (replicated) at various points within the Hartree-Fock procedure, thereby
causing limitations, especially for the geometry optimization calculation, due to the
amounts of memory necessary to hold these quantities on each individual node. This
severely limits the size molecular system that can be calculated and forces an
unacceptably low ratio of processors to memory. With less than 32 Mbytes/node, the
size of molecular systems that can be modeled is limited to less than 60 atoms, and the
speedup saturates at 16 to 32 nodes.

The vibrational analysis component shows more promise within the replicated
data parallel implementation. The fact that the parallel implementation of the code
performs similarly for large and small systems, allows us to extrapolate the results to
predict that very large numbers of processors could be brought to bear on this problem
given efficient global calls and memory. Analogously, this work has shown the
potential for parallelization of the vibrational component within ab initio codes.

Significant attention by this author as well as others (53) is now being given
towards the implementation of these methods using a distributed data parallel strategy,
which clearly shows to be superior in light of the known memory problems associated
with these methods. In the distributed data parallel strategy, individual node tasks are
not collected together on each node at any time during the calculation. Thus,
performing a quantum mechanical calculation on a molecule of size Ν atoms, can be
distributed over ρ processors such that only N/p amount of memory is ever needed on
any individual node. This will allow our goals involving calculation of molecules with
hundreds of atoms, and study of reaction paths and solvent effects of large systems to
be a reality.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

112 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Acknowledgments

The author would like to thank Scott Kohn and Jay Siegel for several beneficial
discussions. Support was provided by the National Science Foundation (Grant No.
ASC-9212619 and Grant No. ASC-8902827), Intel Corporation, and the San Diego
Supercomputer Center.

Literature Cited

1. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular
Orbital Theory; John Wiley & Sons: New York, 1986, and references therein.

2. Schaefer, H. F. III, Science, 1986, 231, 1100, and many examples cited
therein.

3. Stewart, J. J. P.; Csaszar, P.; Pulay, P. J. Comp. Chem., 1982, 3, 227.
4. Pulay, P. In Applications of Electronic Structure Theory; Schaefer, H.F.,

Ed., Plenum Press: New York, 1977, p. 153.
5. Pople, J.A.; Krishnan, R.A.; Schlegel, H.B. Int. J. Quantum Chem. Symp.,

1979, 13, 225.
6. Morokuma, K.; Kato, S. In Potiential Energy Surfaces andDynamics

Calculations', Truhlar, D.G., Ed., Plenum Press: New York, 1981, p. 243;
Morokuma, K.; Kato, S.; Kitsura, K.; Ubara, S.; Ohta, K.; Hanamura, M. In
New Horizons in Quantum Chemistry; Reidel: Dordrecht, 1983, p. 221.

7. Morokuma, K.; Kato, S.; Kitaura, K.; Ubara, S.; Ohta, K.; Hanamura, M. In
New Horizons in Quantum Chemistry; Lowdin, P.-O., Pullman, B., Eds.,
Reidel: Durdrecht, The Netherlands, 1983, 221.

8. Gaw, J.F.; Yamaguchi, Y.; Schaefer, H.F. J. Chem. Phys., 1984, 81, 6395.
9 Luethi, H. P.; Mertz, J. E.; Feyereisen, M. W.; Almlof, J. E. J. Comp. Chem.,

1992, 13, 160.
10. Whiteside, R. Α.; Binkley, J. S.; Colvin, M.E.; Schaefer, H. F. III J. Chem.

Phys., 1987, 86, 2185.
11. Hertz, J. E.; Andzelm, J. W. CRAY Channels, 1991, 10.
12. Luethi, H. P.; Mertz, J. E. Supercomputing Review, 1992.
13. Whiteside, R. Α.; Binkley, S. J.; Colvin, M.E.; Schaefer, H. F. J. Chem.

Phys., 1987, 86, 2185.
14. Guest, M. F.; Harrison, R. J.; van Lenthe, J. H.; van Corier, L. C. H.

Theoret. Chim. Acta, 1987, 71, 117.
15. Dupuis, M.; Watts, J. D. Theoret. Chim. Acta, 1987, 7, 91.
16. Carbo, R.; Molino, L.; Calabuig, B. J. Comp. Chem., 1992, 13, 155.
17. Luethi, H. P.; Mertz, J.E.; Feyereisen, M. W.; Almlof, J. E. J. Comp. Chem.,

1992, 13, 160.
18. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.;

Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; Windus,
T.L., J. Comp. Chem., 1993, 14, 1347.

19. Stewart, J. J. P. Quantum Chem. Exchange. Bull, 1985, 5, 133, QCPE
Program 455.

20. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am.
Chem. Soc, 1985, 107, 3902.

21. Stewart, J. J. P. MOP AC Manual; A General Molecular Orbital Package,
Frank J. Seiler Research Laboratory, Dec. 1988.

22. Levine, I. N. In Quantum Chemistry; Shull, Harrison, Ed.; Allyn and Bacon,
Inc.: New York, 1983.

23. Szabo, Α.; Ostlund, N. In Modern Quantum Chemistry; MacMillan
Publishing Co., Inc.: New York, 1982.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

8. BALDRIDGE Parallel Semiempirical Quantum Methods 113

24. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. In Ab Initio
Molecular Orbital Theory; John Wiley and Sons: New York, 1986.

25. Clark, T. In A Handbook of Computational Chemistry; John Wiley and Sons,
Inc.: New York, 1985.

26. Frisch, M. J.; Head-Gordon, M.; Trucks, G. W.; Foresman, J. B.; Schlegel,
H. B.; Raghavachari, K.; Robb, M.; Binkley, J. S.; Gonzalez, C.; Defrees, D.
J.; Fox, D. J.; Whiteside, R. Α.; Seeger, R.; Melius, C. F.; Baker, J.; Martin,
R. L.; Kahn, L. R.; Stewart, J. J. P.; Topial, S.; Pople, J. Α., Gaussian 90,
Gaussian Inc., 6823 North Lakewood, Chicago IL 60626

27. Schmidt, M. W.; Baldridge, Κ. K.; Boatz, J. Α.; Jensen, J. H.; Koseki, S.;
Gordon, M. S.; Nguyen, Κ. Α.; Windus, T. L.; Albert, S. T. GAMESS,
Quantum Chemistry Program Exchange Bulletin, 10, 1990.

28. Amos, R. D.; Rice, J. E. CADPAC: The Cambridge Analytical Derivatives
Package, Issue 4.0, Cambridge, 1987.

29. Carbo, R.; Molino, L.; Caloboig, B. J. Comp. Chem., 1992, 13, 155.
30. Kalamboukis, T. Z. Parallel Computing, 1992, 18, 207.
31. Dongarra, J.; Sorensin, D. SIAM J. Sci. Stat. Computing, 1987, 8, sl39.
32. Cuppen, J. J. M. Numer. Math., 1981, 36, 177.
33. Ipsen, C. F.; Jessup, E. R. SIAM J. Sci. Stat. Computing, 1991, 12, 469.
34. Lo, S. S.; Philippe, B.; Sameh, A. SIAM J. Sci. Stat. Computing, 1987, 8,

s155.
35. Demmel, J.; Croz, J. Du.; Hammering, S.; Sorenson, D., Argonne National

Laboratory, MCS-TM-111, 1988.
36. Szabo, Α.; Ostlund, N. S. In Modern Quantum Chemistry Introduction to

Advanced Electronic Structure Theory; Macmillan: New York, 1982.
37. MNDO: Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc, 1977, 99, 4899.
38. MNDO/3: Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. J. Am. Chem. Soc,

1975, 97, 1294.
39. PM3: Stewart, J. J. P. J. Comp. Chem., 1989, 10, 209. Stewart, J. J. P. J.

Am. Chem. Soc, 1989, 10, 221.
40. Stewart, J. J. P. J. Comp. Aided Molecular Design, 1990, 4, 45.
41. Jensen, J.; Baldridge, Κ. K.; Gordon, M. S. J. Phys. Chem., 1992, 96, 8340.
42. Bartlet, R. H. University of Texas Center for Numerical Anaylsis, Report

CNA-44, Austin, Texas, 1972.
43. QCPE: Quantum Chemistry Program Exchange, Creative Arts Buiding 181

Indiana University, Bloomington, IN, 47405 USA.
44. CRAY Research, Inc., Unicos Performance Utilities Reference Manual,

Publication SR-2040.
45. Press, W. H. In Numerical Recipes; Cambridge University Press: New York,

1986.
46. Gear, C. W. In Numerical Initial Value Problems in ODE's; Prentice-Hall,

Inc.: New Jersey, 1971.
47. Gupta, G. K.; Sacks-Davis, R.; Tischer, P. E. Computer Surveys, 1985, 17,

10.
48. Butcher, J. Mathematics of Computation, 1965, 19, 408.
49. Burden, R. L.; Faires, J. D.; Reynolds, A. C. In Numerical Analysis; Prindle,

Weber, and Schmidt: Boston, 1978.
50. Demmel, J.; Veselic, K. University of Tennessee, CS-89-88,October, 1989.
51. Yoshitake, Bebbo In Computers and Chemistry; 1982, 6.
52. Baldridge, K.K. "Parallelization Implementation of Semiempirical Quantum

Methods for the Intel Platforms," Scientific Programming, submitted.
53. Harrison, R. J. et. al. "Scalable Parallel Algorithms," work done at Pacific

Northwest Laboratory, unpublished results.
RECEIVED December 21, 1994

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
8

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 9

Parallel Molecular Dynamics Algorithms
for Simulation of Molecular Systems

Steve Plimpton and Bruce Hendrickson

Parallel Computational Sciences Department 1421, Mail Stop 1111,
Sandia National Laboratories, Albuquerque, NM 87185-1111

Three classes of parallel algorithms for short-range classical molecular
dynamics are presented and contrasted and their suitability for simulation
of molecular systems is discussed. Performance of the algorithms on the
Intel Paragon and Cray T3D in benchmark simulations of Lennard-Jones
systems and of a macromolecular system is also highlighted.

Molecular dynamics (MD) is a widely-used tool for simulating liquids and solids
at an atomistic level [1]. Molecular systems such as polymers, proteins, and D N A
are particularly interesting to study with M D because the conformational shape of
the molecules often determines their properties. Such systems are computationally
challenging to simulate because (1) in the absence of crystal periodicity large
numbers of atoms must often be included in the model, and (2) interesting events
such as molecular diffusion or conformational changes typically occur on long
timescales relative to the femtosecond-scale timesteps of the M D model.

M D simulations are natural candidates for implementation on parallel com
puters because the forces on each atom or molecule can be computed indepen
dently. M D simulations of molecular systems require computation of two kinds
of interactions: bonded forces within the topology of the simulated molecules and
non-bonded van der Waals and Coulombic forces. In this paper we limit our
scope to short-range M D models where the non-bonded forces are truncated,
so that each atom interacts only with other atoms within a specified cutoff dis
tance. Examples of widely-used commercial and research codes in this category
include C H A R M M , GROMOS, A M B E R , and DISCOVER. While more accurate,
M D models with long-range forces are more expensive to compute with, even if
hierarchical methods [2] or multipole approximations [13] are used. However, in
long-range force models there is a near-field component to the computation which
requires a summation of pairwise interactions with near-neighbors. Parallelizing

0097-6156/95A)592-0114$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 115

that portion of the computation is essentially the equivalent of the short-range
force calculations we will discuss here.

Several techniques have been developed by various researchers for paralleliz
ing short-range M D simulations effectively [11, 15, 20, 24]. The purpose of this
paper is to describe the different methods and highlight their respective advan
tages and disadvantages when applied to molecules, be they small-molecule or
macromolecular systems. We begin in the next section with a brief description
of the computations that are performed in such M D simulations. The next three
sections outline the three basic classes of parallel methods: replicated-data, force-
decomposition, and spatial-decomposition approaches. The three methods differ
in how they distribute the atom coordinates among processors to perform the nec
essary computations. Although all of the methods scale optimally with respect to
computation, their different data layouts incur different inter-processor commu
nication costs which affect the overall scalability of the methods. In the Results
section we briefly describe two benchmark simulations to illustrate the perfor
mance and scalability of the parallel methods on two large parallel machines, an
Intel Paragon and Cray T3D. The first benchmark is of a Lennard-Jones system
with only non-bonded forces; the second is of a solvated myoglobin molecule. F i
nally, the trade-offs between the three parallel methods are summarized in the
conclusion.

Computational Aspects

In M D simulations of molecular systems two kinds of interactions contribute to
the total energy of the ensemble of atoms — non-bonded and bonded. These
energies are expressed as simple empirical relations [4]; the desired physics or
chemistry is simulated by specifying appropriate coefficients. The energy Enb due
to non-bonded interactions is typically written as

(1)

where the first term is Coulombic interactions and the second is van der Waals,
r is the distance between atoms i and j , and all subscripted quantities are user-
specified constants. In short-range simulations, the summations over i and j
are evaluated at each timestep so as to only include atom pairs within a cutoff
distance r c , such that r < rc. The bonded energy Eb for the system in the
harmonic approximation can be written as

Eb= Σ Kbir-rof+Y, A'*(0-0 O) 2 + £ Κφρ[1+άρϊ.οφιρφ)]+ £ Κφ(φ-φ0)2

bonds angles dihedrals i m propers

(2)

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

116 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y

where the first term is 2-body energy, the second is 3-body energy, and the
last two are 4-body interactions for torsional dihedral and improper dihedral
energies within the topology of the molecules. The distance r and angles θ and
φ are computed for each interaction as a function of the atomic positions; the
subscripted quantities are constants. In contrast to the non-bonded energy, the
summations in this equation are explicitly enumerated by the user to setup the
simulation, i.e. the connectivities of the molecules are fixed. In the M D simulation,
derivatives of Equations 1 and 2 yield force equations for each atom which are
integrated over time to generate the motion of the ensemble of atoms.

On a parallel machine with Ρ processors, if a simulation runs Ρ times faster
than it does on one processor, it is 100% parallel efficient, or has achieved a perfect
speed-up. In molecular simulations both non-bonded and bonded force terms
must be spread uniformly across processors to achieve this optimal speed-up.
Because atomic densities do not vary greatly in physical systems, the summations
in Equation 1 imply that each atom interacts with a small, roughly constant
number of neighboring atoms. Similarly, there are a small, fixed number of 2-,
3-, and 4-body interactions in Equation 2 which each atom participates in. Thus,
the computational effort in a macromolecular M D model scales linearly with N,
the number of atoms in the simulation, and the optimal scaling a parallel method
can achieve is as Ν/P. In any method, whether it scales optimally or not, any
exchange of data via inter-processor communication or any imbalance among the
processors in computing the terms in Equations 1 or 2 will reduce the parallel
efficiency of the method.

Conceptually, the computations in Equation 1 can be represented as a force
matrix F where the (ij) element of F is the force due to atom j acting on atom
i. The Ν χ Ν matrix is sparse due to short-range forces. To take advantage of
Newton's 3rd law, we also set Fij = 0 when i > j and i + j is even, and likewise
set = 0 when i < j and i + j is odd. Thus the interaction between a pair of
atoms is only computed once. This zeroing of half the matrix elements can also be
accomplished by striping F in various ways [23]. Conceptually, F is now colored
like a checkerboard with red squares above the diagonal and black squares below
the diagonal set to zero. The first two parallel methods we discuss in the next
sections assign portions of this F matrix to different processors.

Replicated-Data Method

The most commonly used technique for parallelizing M D simulations of molecular
systems is known as the replicated-data (RD) method [24]. Numerous parallel
algorithms and simulations have been developed based on this approach [5, 8, 9,
16, 17, 18, 22, 25]. Typically, each processor is assigned a subset of atoms and
updates their positions and velocities for the duration of the simulation, regardless
of where they move in the physical domain.

To explain the method, we first define χ and / as vectors of length TV which

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 117

store the position and total force on each atom. Each processor is assigned a
sub-block of the force matrix F which consists of N/P rows of the matrix, as
shown in Figure 1. If ζ indexes the processors from 0 to Ρ — 1, then processor
Pz computes non-bonded forces in the Fz sub-block of rows. It also is assigned
the corresponding position and force sub-vectors of length N/P denoted as xz

and fz. The computation of the non-bonded force Fij requires only the two atom
positions xi and Xj. But to compute all the forces in Fz, processor Pz will need the
positions of many atoms owned by other processors. In Figure 1 this is represented
by having the horizontal vector χ at the top of the figure span all the columns of
F. This implies each processor must store a copy of the entire χ vector - hence
the name replicated-data.

x

*2

Figure 1: The division of the force matrix among 8 processors in a replicated-data
algorithm. Processor 2 is assigned Ν/Ρ rows of the matrix and the corresponding
X2 piece of the position vector. In addition, it must know the entire position vector
χ (shown spanning the columns) to compute the non-bonded forces in F2.

The RD algorithm is outlined in Figure 2 with the dominating term in the
computation or communication cost of each step listed on the right. We assume
at the beginning of the timestep that each processor knows the current positions
of all TV atoms, i.e. each has an updated copy of the entire χ vector. In step (1)
of the algorithm, the non-bonded forces in matrix sub-block Fz are computed.
This is typically done using neighbor lists to tag the interactions that are likely to
be non-zero at a given timestep. In the parallel algorithm each processor would
construct lists for its sub-block Fz once every few timesteps. To take advantage
of Newton's 3rd law, each processor also stores a copy of the entire force vector J.
As each pairwise non-bonded interaction between atoms i and j is computed, the
force components are summed twice into / , once in location i and once (negated) in
location j, so that Fz is never actually stored as a matrix. Step (1) scales as N/P,

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

118 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

the number of non-zero non-bonded interactions computed by each processor.

(1) Compute non-bonded forces in Fz,
Ν
Ρ doubly summing results into local copy of / Ν
Ρ

(2) Compute 1/P fraction of bonded forces,
summing results into local copy of / Ν

Ρ
(3) Fold / across all processors, result is fz Ν
(4) Update atom positions in xz using fz

Ν
Ρ

(5) E x p a n d xz among all processors, result is χ Ν

Figure 2: Single timestep of the replicated-data algorithm for processor Pz.

In step (2) the bonded forces in Equation 2 are computed. This can be done
by spreading the loops implicit in the summations of Equation 2 evenly across the
processors. Since each processor knows the positions of all atoms, it can compute
any of the terms in Equation 2, and sum the resulting forces into its local copy
of J. This step also scales as N/P, since there are a small, fixed number of
bonded interactions per atom. In step (3), the local force vectors are summed
across all processors in such a way that each processor ends up with the total
force on each of its N/P atoms. This is the sub-vector fz. This force summation
is a parallel communication operation known as a fold [12]. Various algorithms
have been developed for performing the operation efficiently on different parallel
machines and architectures [3, 12, 26]. The key point is that each processor must
essentially receive N/P values from every other processor to sum the total forces
on its atoms. The total volume of communication (per processor) is thus Ρ χ N/P
and the fold operation thus scales as N.

In step (4), the summed forces are used to update the positions and velocities
of each atom. Finally, in step (5) the updated atom positions in xz are shared
among all Ρ processors in preparation for the next timestep. This is essentially
the inverse of step (3), and is a communication operation called an expand [12].
Since each processor must send its N/P positions to every other processor, this
step also scales as N.

The RD algorithm we have outlined divides the MD force computation and
integration evenly across the processors; steps (1), (2) and (4) scale optimally
as N/P. Load-balance will be good so long as each processor's subset of atoms
interacts with roughly the same total number of neighbor atoms. If this does
not occur naturally, it can be achieved by randomizing the order of the atoms
initially [21] or by adjusting the size of the subsets dynamically as the simulation
progresses to tune the load-balance [28]. The chief drawback to the RD algorithm
is that it requires global communication in steps (3) and (5); each processor must
acquire information held by all the other processors. As indicated above, this
communication scales as N, independent of P. This means that if the number
of processors used in the simulation is doubled, the communication portions of

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 119

the algorithm do not speed up. Practically speaking this limits the number of
processors that can be used effectively.

The chief advantage of the RD algorithm is that of simplicity, particularly for
computation of the bonded force terms. The computational steps (1), (2), and
(4) can often be implemented by simply modifying the loops and data structures
in a serial or vector code to treat N/P atoms instead of N. The fold and expand
communication operations (3) and (5) can be treated as black-box routines and
inserted at the proper locations in the code. Few other changes are typically
necessary to parallelize an existing code.

Force-Decomposition Method

A parallel algorithm that retains many of the advantages of the replicated-data
approach, while reducing its communication costs, can be formulated by partition
ing the force matrix F by sub-blocks rather than rows, as illustrated in Figure 3.
We call this a force-decomposition (FD) method [20]. Use of the method in the
macromolecular M D code ParBond is described in [21]; a modified F D approach
has also been implemented in a parallel version of C H A R M M [6].

The block-decomposition in Figure 3 is actually of a permuted force matrix F'
which is formed by rearranging the columns of the original checkerboarded F in a
particular way. As before, we let ζ index the processors from 0 to Ρ — 1; processor
Pz owns and will update the N/P atoms stored in the sub-vector xz. If we order
the xz pieces in row-order (across the rows of the matrix), they form the usual po
sition vector χ which is shown as a vertical bar at the left of the figure. Were we to
have χ span the columns as in Figure 1, we would form the force matrix as before.
Instead, we span the columns with a permuted position vector x', shown as a hori
zontal bar at the top of Figure 3, in which the xz pieces are stored in column-order
(down the columns of the matrix). Thus, in the 16-processor example shown in
the figure, χ stores each processor's piece in the usual order (0 ,1 ,2 ,3 ,4 ,14 ,15)
while x' stores them as (0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15). Now the (ij)
element of F' is the force on atom i in vector χ due to atom j in permuted vector
x'.

The Ff

z sub-block owned by each processor Pz is of size (N/y/P) x {Ν/VP).
As indicated in the figure, to compute the non-bonded forces in F'ZJ processor
Pz must know one piece of each of the χ and x' vectors, which we
denote as xa and χ'β. As these elements are computed they will be accumulated
into corresponding force sub-vectors fa and f β. The Greek subscripts a and β
each run from 0 to \fP — 1 and reference the row and column position occupied by
processor Pz. Thus for processor 6 in the figure, xa consists of the χ sub-vectors
(4,5,6,7) and χ'β consists of the x' sub-vectors (2,6,10,14).

The FD algorithm is outlined in Figure 4. As before, each processor has up
dated copies of the needed atom positions xa and χ'β at the beginning of the

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

120 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

0 1 2 3

4 5 F 6 7

8 9 10 11

12 13 14 15

Figure 3: The division of the permuted force matrix F' among 16 processors in
the force-decomposition algonthm. Processor P 6 is assigned a sub-block F'Q of
size Ν J y/P by N/ yfP. To compute the non-bonded forces in F'Q it must know
the corresponding Ν/y/P-length pieces xQ and χ'β of the position vector χ and
permuted position vector x'.

timestep. In step (1), the non-bonded forces in matrix sub-block F ' Z are com
puted. As before, neighbor lists can be used to tag the Ο (N/P) non-zero interac
tions in F ' Z . As each force is computed, the result is summed into the appropriate
locations of both fa and f $ to account for Newton's 3rd law. In step (2) each
processor computes an N/P fraction of the bonded interactions. Since each pro
cessor knows only a subset of atom positions, this must be done differently than
in the RD algorithm. For each set of 2, 3, or 4 atoms corresponding to a bonded
interaction term in Equation 2, we must guarantee that some processor knows all
the needed atom positions. This can be accomplished be ordering the atoms in
the χ vector appropriately as a pre-processing step before the M D simulation is
begun. A heuristic method for doing this is described in reference [21].

In step (3), the force on each processor's atoms is acquired. The total force on
atom i is the sum of elements in row i of the force matrix minus the sum of elements
in column i\ where i is the permuted position of column i. Step (3a) performs a
fold within each row of processors to sum the first of these contributions. Although
the fold algorithm used is the same as in the previous section, there is a key
difference. In this case the vector fa being folded is only of length N/y/P and only
the y/P processors in one row are participating in the fold. Thus this operation
scales as N/y/F instead of Ν as in the RD algorithm. Similarly, in step (3b), a
fold is done within each column of F ' . The two contributions to the total force
are joined in step (3c).

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 121

(1) Compute non-bonded forces in F' Z,
storing results in fa and f β Ν

Ρ
(2) Compute l/P fraction of bonded forces,

Ν storing results in fa and f0

Ν

(3a) Fold / a within row a, result is fz
Ν

VP
(3b) Fold f β within column result is fz

Ν

Ψ
R

(3c) Subtract f'z from fz, result is total fz

Ν

Ψ
R (4) Update atom positions in xz using fz

Ν

Ψ
R

(5a) Expand xz within row a, result is xa
Ν

VP
(5b) Expand xz within column /5, result is χ'β Ν

VP

Figure 4: Single timestep of the force-decomposition algorithm for processor Pz.

In step (4), fz is used to update the N/P atom positions in xz. Steps (5a-5b)
share these updated positions with all the processors that will need them for the
next timestep. These are the processors which share a row or column with Pz.
First, in (5a), the processors in row a perform an expand of their xz sub-vectors
so that each acquires the entire xa. As with the fold, this operation scales as the
N/y/P length of xa instead of as iV as it did in the RD algorithm. Similarly, in
step (5b), the processors in each column β perform an expand of their xz. As a
result they all acquire χ'β and are ready to begin the next timestep.

As with the RD method, the FD method we have outlined divides the M D com
putations evenly among the processors. Step (1) will be load-balanced if all the
matrix sub-blocks F ' Z are uniformly sparse. As with the RD method, a random
ized initial ordering of atoms produces the desired effect. The key enhancement
offered by the FD method is that the communication operations in steps (3) and
(5) now scale as N/y/~P rather than as Ν as was the case with the RD algorithm.
When run on large numbers of processors this can significantly reduce the time
spent in communication. Likewise, memory costs for position and force vectors
are reduced by the same y/P factor. Finally, though more steps are needed, the
FD approach retains the overall simplicity and structure of the RD method; it
can be implemented using the same expand and fold communication routines.

Spatial-Decomposition Method

The final parallel method we describe exploits the locality of the short-range
forces by assigning to each of the Ρ processors a small region of the simulation
domain. As illustrated in Figure 5 this is a geometric- or spatial-decomposition
(SD) of the workload. For reasons that will be outlined below, there have been
fewer implementations of short-range macromolecular M D simulations using this
method [7, 10, 27] than with RD approaches.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

122 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 5: The division of the 3-D periodic simulation domain among 64 processors
in a spatial-decomposition algorithm. With this force cutoff distance (arrow), pro
cessor Pz only need communicate with the 26 nearest-neighbor processors owning
the shaded boxes.

The SD algorithm is outlined in Figure 6. Processor ζ owns the box labeled
Dz and will update the positions xz of the atoms in its box. To compute forces on
its atoms a processor will need to know not only xz but also positions yz of atoms
owned by processors whose boxes are within a cutoff distance rc of its box. As it
computes the forces fz on its atoms, it will also compute components of forces gz

on the nearby atoms (Newton's 3rd law).

We again assume that current xz and yz positions are known by each processor
at the beginning of the timestep. With these definitions, steps (1) and (2) of the
algorithm are the computation of non-bonded and bonded forces for interactions
involving the processor's atoms. These steps scale as the number of atoms N/P in
each processor's box. In step (3) the gz forces computed on neighboring atoms are
communicated to processors owning neighboring boxes. The received forces are
summed with the previously computed fz to create the total force on a processor's
atoms. The scaling of this step depends on the length of the force cutoff relative
to the box size. We list it as Δ and discuss it further below. Step (4) updates the
positions of the processor's atoms. In step (5) these positions are communicated
to processors owning neighboring boxes so that all processors can update their
y ζ list of nearby atoms. Finally in step (6), periodically (usually when neighbor
lists are created), atoms which have left a processor's box must be moved to the
appropriate new processor.

The above description ignores many details of an effective SD algorithm [20],

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 123

(1) Compute non-bonded forces in Dz,
summing results into fz and gz

Ν
Ρ

(2) Compute bonded forces in Dz,
Ν
Ρ summing results into fz and gz

Ν
Ρ

(3) Share gz with neighboring processors,
summing received forces into my fz Δ

(4) Update atom positions in xz using fz
Ν
Ρ

(5) Share xz with neighboring processors,
using received positions to update yz Δ

(6) Move atoms to new processors as necessary Δ

Figure β: Single timestep of the spatial-decomposition algorithm for processor Pz.

but it is clear that the computational scaling of steps (1), (2), and (4) is again the
optimal N/P. The scaling of the communication steps (3), (5), and (6) is more
complex. In the limit of large N/P ratios, Δ scales as the surface-to-volume ratio
(N/P)W^ of each processor's box. If each processor's box is roughly equal in size
to the force cutoff distance, then Δ scales as N/P and each processor receives
N/P atom positions from each of its neighboring 26 processors (in 3-D), as in
Figure 5. In practice, however, there can be several obstacles to minimizing Δ
and achieving high parallel efficiencies for a SD method in M D simulations of
molecular systems.

(A) Molecular systems are often simulated in a vacuum or with surrounding
solvent that does not uniformly fill a 3-D box. In this case it is non-trivial to
divide the simulation domain so that every processor's box has an equal number
of atoms in it and yet keep the inter-processor communication simple. Load-
imbalance is the result.

(B) Because of the 1/r dependence of Coulombic energies in Equation 1, long
cutoffs are often used in simulations of organic materials. Thus a processor's box
may be much smaller than the cutoff. The result is considerable extra communi
cation in steps (3) and (5) to acquire needed atom positions and forces, i.e. Δ no
longer scales as N/P, but as the cube of the cutoff distance rc.

(C) As atoms move to new processors in step (6), molecular connectivity in
formation must be exchanged and updated between processors. The extra coding
to manipulate the appropriate data structures and optimize the communication
performance of the data exchange subtracts from the parallel efficiency of the
algorithm.

In general, SD methods are more difficult to integrate into large, existing codes
than are RD or even FD methods. This fact, coupled with the potential for other
parallel inefficiencies just outlined (A-C), has made SD implementations less com
mon than RD for macromolecular M D codes. However, in terms of their optimal
communication scaling they are clearly the method of choice for very large sim-

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

124 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

illations. Additionally, for M D codes that include long-range force interactions
via multipole methods [13], SD methods are a natural choice for performing the
near-field pair wise computations. This is because the far-field multipole contri
butions to the forces are computed on a hierarchy of spatial grids that correspond
to coarsened versions of the fine grid pictured in Figure 5.

Results

In this section we highlight the performance of the three parallel M D algorithms
just described on two large parallel machines, an 1840-processor Intel Paragon
at Sandia running the SUNMOS operating system [19] and a 512-processor Cray
T3D at Cray Research. The same F77 codes were run on both machines; only a
few lines of code are machine-ispecific calls to native send and receive message-
passing routines.

The first set of results are for a benchmark simulation of Lennard-Jonesium
[20]; just the second non-bonded term in Equation 1 is included in the force model.
A 3-D periodic box of atomic liquid is simulated with a standard force cutoff
of 2.5σ encompassing an average of 55 neighbors/atom. The C P U time per M D
timestep is shown in Figure 7 for runs of various sized systems on single processors
of the Cray Y - M P and C90 and on 1024 processors of the Intel Paragon. The code
run on the Y - M P and C90 is a slightly modified version of the algorithm of Grest
et al. [14] which vectorizes completely and has produced the fastest timings to date
for this benchmark on conventional vector supercomputers [14, 20]. The Paragon
timings are for codes which implement the three parallel algorithms discussed
in the previous sections: replicated-data (RD), force-decomposition (FD), and
spatial-decomposition (SD); more details are given in reference [20]. The three
timing curves for 512 processors of the Cray T3D are virtually identical to these
(to within a few percent), meaning the T3D's computation and communication
rates for these codes are twice as fast as the Paragon on a per-processor basis.

The data in the figure show that, as expected, all of the algorithms scale
linearly with Ν in the large Ν limit. The timings for FD are faster than RD for
all sizes, due to FD's reduced communication cost. For small problems, FD is
the fastest of the three parallel algorithms; for larger sizes SD quickly becomes
the fastest method. For large TV the difference in timings between the three
algorithms is due to their relative communication costs; all of them are essentially
equivalent with respect to parallelizing the computational portions of the timestep
calculation.

It is worth noting that this is a benchmark problem for which the SD approach
is ideally suited. The simulated atoms uniformly fill a 3-D box which can be eas
ily partitioned equally among the processors. More irregular problems would lead
to load-imbalance which would reduce the parallel efficiency of the SD method,
but not the F D and R D methods. Also, the crossover size at which SD becomes
faster than FD is a function of Ρ and of several features of the benchmark, in

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 125

Figure 7: CPU timings (seconds/timestep) for the three parallel algorithms on
1024 processors of the Intel Paragon for different problem sizes. Single-processor
Cray Y-MP and C90 timings are also given for comparison.

particular the cutoff distance. Consider the case where the cutoff is increased to
5.0σ to encompass 440 neighbors/atom. This is more typical of the cutoffs used
in charged systems to include more of the longer-range Coulombic interactions.
There is now 8 times as much computation per atom to be performed in all of the
parallel methods. In the SD method there is also 8 times as much communica
tion to acquire atoms within the cutoff distance, so the ratio of communication to
computation is unchanged. By contrast, in the RD and F D methods, the amount
of communication is independent of the cutoff distance, so the ratio of communi
cation to computation is reduced and the parallel efficiency of the methods goes
up. The net effect is to shift the crossover size where SD becomes faster to larger
N. In practice this can be many tens of thousands of atoms [20].

The timing data in Figure 7 also indicate what is feasible on current-generation
parallel supercomputers for short-range M D simulations of Lennard-Jones sys
tems. On the million-atom simulation the 1024-processor Paragon is running
at 0.199 seconds/timestep, about 30 times faster than a C90 processor (extrap
olated). Similarly the 512-processor T3D runs at 0.205 seconds/timestep. If all
1840 nodes of Sandia's Paragon are used, if the dual-processor mode is enabled

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

126 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

where a second i860 processor on each node normally used for communication
is used for computation, and if the Lennard-Jones force computation kernel is
written in assembler rather than Fortran, these timing numbers can be improved
by about a factor of 4-5 for large Ν [20]. The million-atom simulation then runs
at 0.045 seconds/timestep (80,000 timesteps/hour) and 100,000,000 atoms can be
simulated in 3.53 seconds/timestep, about 165 times faster than a C90 processor.

Timing results for a macromolecular simulation of myoglobin using the force
model of Equations 1 and 2 are shown in Figure 8. This is a prototypical pro
tein benchmark proposed by Brooks et al. [5] who have done extensive testing
of a variety of machines with C H A R M M for this problem. A 2534-atom myo
globin molecule (with an adsorbed CO) is surrounded by a shell of solvent water
molecules for a total of 14,026 atoms. The resulting ensemble is roughly spherical
in shape. The benchmark is a 1000-timestep simulation performed at a tempera
ture of 300° Κ with a non-bonded force cutoff of 12.0 Â. Neighbor lists are created
every 25 timesteps with a 14.0 Â cutoff.

τ 1 1 1 1 1 1 1 1 1 Γ

J I I I I I I I I I L

1 2 4 8 16 32 64 128 256 5121024

Number of Processors

Figure 8: CPU timings (seconds/timestep) on different numbers of processors
for a 14026-atom myoglobin benchmark. The squares are timings for replicated-
data implementations; circles are for force-decomposition. Timings for the filled
symbols are from reference [5].

A l l of the filled symbols in the figure are timings due to Brooks et al. [5].

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 127

The single processor Cray Y - M P timing of 3.64 secs/timestep is for a version of
C H A R M M they have optimized for vector processing. They have also developed a
parallel version of C H A R M M [5] using a RD algorithm similar to out replicated-
data method. Timings with that version on an Intel iPSC/860 and the Intel Delta
at CalTech are shown in the figure as filled squares.

We have implemented both RD and FD algorithms in a parallel M D code for
molecular systems we have written called ParBond. It is similar in concept (though
not in scope) to the widely-used commercial and academic macromolecular codes
C H A R M M , A M B E R , GROMOS, and DISCOVER. In fact, ParBond was designed
to be CHARMM-compatible in the sense that it uses the same force equations as
C H A R M M [4], Since the RD and FD methods both use the same communication
primitives, ParBond simply has a switch that partitions the force matrix either
by rows or sub-blocks as in Figures 1 and 3.

Timings for ParBond on the Intel Paragon using the RD and F D described
earlier are shown by the upper set of open squares and circles respectively in
the figure. Taking into account that the Î860XP floating point processors in the
Paragon are about 30% faster than the i860XR chips in the iPSC/860 and Delta
and that inter-processor communication is significantly faster on the Paragon,
the two sets of RD timings (filled and open squares) are similar. Both curves
show a marked roll-off in parallel efficiency above 64-128 processors due to the
poor scaling of the expand and fold operations. This is typical of the results
reported in references [8, 9, 16, 17, 18, 22, 25] for RD implementations of other
macromolecular codes such as C H A R M M , A M B E R , and GROMOS on a variety
of parallel machines. Parallel efficiencies as low as 10-15% on a few dozens to
hundreds of processors are reported and in some cases the overall speed-up is
even reduced as more processors are added due to communication overheads. The
implementation of Sato et al. [22] is a notable exception which achieves parallel
efficiencies of 32 and 44% on 512 processors for their two benchmark calculations.

By contrast the FD algorithm timings in ParBond (open circles) for the Paragon
fall off less rapidly as processors are added; it is running 1.3 times faster than its
RD counterpart on 256 processors (0.265 secs/timestep vs. 0.347) and 2.1 times
faster on 1024-processors (0.0913 secs/timestep vs. 0.189). In other macromolec
ular simulations it has performed up to 3.3 times faster than the RD algorithm
on 1024 Paragon processors [21]. The 1024-processor Paragon timing for FD in
Figure 8 is about 40 times faster than the single Y - M P processor timing. The long
dotted line in the figure represents perfect speed-up or 100% parallel efficiency for
the ParBond code on the Paragon extrapolated from an estimated one-processor
timing. The F D algorithm still has a relatively high parallel efficiency of 61% on
1024 processors, as compared to 30% for the RD timing.

Cray T3D timings on 64-512 processors are also shown in the figure for Par-
Bond using the RD and FD algorithms (lower set of open squares and circles).
They are shifted downward be a factor of 10 so as to not overlay the Paragon data.
A short dotted reference line is provided by shifting the Paragon perfect speed-up
line down by a factor of 10 as well. The FD timings on the T3D are about 25%

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

128 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

faster than their Paragon counterparts on the same number of processors. This is
less than the 2x factor on the Lennard-Jones benchmark for two reasons. First,
the ratio of single-processor computation rates between the T3D and Paragon is
not as high for ParBond, indicating more optimization work needs to be done on
the T3D version of the code. Second, the computation-to-communication ratio
is higher in this benchmark because of the longer cutoffs and more complicated
force equations. Thus there is relatively less time spent in communication, and the
T3D's higher effective communication bandwidth (due to its 3-D torus topology
vs. a 2-D mesh for the Paragon) is less of a factor. These are also the reasons the
FD algorithm is less of a win relative to a RD approach on the T3D; the advantage
of F D is its communication scaling and the RD implementation on the T3D is
only spending a small fraction of its time in inter-processor communication.

We are not aware of any spatial-decomposition (SD) implementations of this
myoglobin benchmark to compare with the RD and FD results presented here.
Because the atoms fill a spherical volume instead of a box and because the cutoff
distance is relatively long (950 neighbors/atom), we would expect an SD approach
on hundreds or thousands of processors to have difficulty matching the 61% par
allel efficiency of the F D algorithm on 1024 Paragon processors for this problem.
However, in principle, for larger (or more uniform) molecular systems even higher
efficiencies should be possible with SD methods. We briefly describe three notable
efforts in this area.

Esselink and Hilbers have developed their SD model [10] for a 400-processor
T800 Transputer machine. They partition uniform domains in 2-D columns with
the 3rd dimension owned wholly on processor and have achieved parallel efficien
cies on regular problems of as high as 50%. Clark et al. have implemented a
more robust 3-D SD strategy in their recently developed EulerGROMOS code
[7], By recursively halving the global domain across subsets of processors, each
processor ends up with a rectangular-shaped sub-domain of variable size which
may not align with its neighbors. This allows irregular-shaped global domains to
be partitioned across processors in a load-balanced fashion at the cost of extra
communication overhead. They report a parallel efficiency of roughly 10% on 512
processors of the Intel Delta at CalTech for a 10914-atom benchmark computa
tion of solvated myoglobin with a 10.0 Â cutoff in a uniformly filled 3-D box.
Finally, Windemuth, has also implemented a novel solution to the load-balancing
problem for irregular-shaped domains in his SD code P M D [27]. He defines one
Voronoi point per processor scattered throughout the simulation domain. The
domain is then tesselated so that each processor ends up owning the physical
region of volume closest to its Voronoi point. By adjusting the position of the
Voronoi points as the simulation progresses and re-tesselating, the simulation can
keep the volume (work) per processor roughly constant and thus insure continued
load-balance even for non-uniform atom densities.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 129

Conclusions

We have discussed three methods suitable for parallelizing M D simulations of
molecular systems. Their basic characteristics are summarized in Figure 9. The
scalability of the computation and communication portions of the algorithms are
listed in the first two columns as a function of number of atoms Ν and number
of processors P. To first order all the methods parallelize the M D computation
optimally as N/P. (Strictly speaking, this ignores some costs in neighbor list
construction which are typically small contributions to the total computational
cost [20]). The chief difference in the methods is in communication cost where
the SD method is a clear winner in the large Ν limit. Memory costs are listed in
the 3rd column. In practice, the O(N) cost of RD methods can limit the size of
problems that can be simulated [5, 21], while on current parallel machines the FD
and SD methods are more limited by compute power than by memory.

Method Computation Communi
cation

Memory Ease of
Coding

Load
Balance

RD
Ν

Ρ Ν Ν simple
geometry-
insensitive

FD
Ν

Ρ

Ν Ν
moderate

geometry-
insensitive

SD
Ν

Ρ [Τ Ν

Ρ
complex

geometry-
sensitive

Figure 9: Comparative properties of three parallel methods for short-range molec
ular dynamics simulations: replicated-data (RD), force-decomposition (FD), and
spatial-decomposition (SD). The scalability of the algorithm's computation, com
munication, and memory requirements when simulating Ν atoms on Ρ processors
is listed. The relative ease of implementation and load-balancing characteristics
of the three methods are also shown.

In the fourth column the relative ease of coding or implementing the three
methods for molecular simulations is listed; RD is the most straightforward, F D
requires more work to handle bonded interactions correctly, and SD is the most
complex of the three in terms of data structures and communication of molecular
connectivity as molecules move from processor to processor. Finally, the load-
balancing properties of the methods are listed in the last column. Both the RD
and FD methods are geometry-insensitive, meaning the processor's workload does

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

130 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

not change as atoms move within the physical domain. In other words, simulations
of irregular-shaped domains are no more difficult to load-balance than regular
domains. By contrast, SD methods are sensitive to the spatial location of the
molecules. Load-imbalance can result if particle densities are non-uniform.

Acknowledgments

This work was partially supported by the Applied Mathematical Sciences pro
gram, U.S. Department of Energy, Office of Energy Research, and was performed
at Sandia National Laboratories, operated for the DOE under contract No. D E -
AC04-76DP00789. The Cray T3D and C90 simulations were performed on ma
chines at Cray Research. We thank Barry Bolding of Cray Research and John
Mertz (now at the Minnesota Supercomputer Center) for assisting in that ef
fort. We also thank Gary Grest of Exxon Research for providing us a copy of his
vectorized Lennard-Jones code for performing the Cray benchmark calculations
discussed in the same section.

References

[1] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Clarendon
Press, Oxford, 1987.

[2] J. E. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algo
rithm. Nature, 324:446-449, 1986.

[3] M. Barnett, L. Shuler, R. van de Geijn, S. Gupta, D. Payne, and J. Watts.
Interprocessor collective communication library (Intercom). In Proc. Scalable
High Performance Computing Conference-94, pages 357-364. IEEE Com

puter Society Press, 1994.

[4] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan,
and M. Karplus. CHARMM: A program for macromolecular energy, mini
mization, and dynamics calculations. J. Comp. Chem., 4:187-217, 1983.

[5] B. R. Brooks and M. Hodošček. Parallelization of CHARMM for MIMD
machines. Chemical Design Automation News, 7:16-22, 1992.

[6] Brooks, B. R. at National Institutes of Health, personal communication, 1994.
[7] T. W. Clark, R. V. Hanxleden, J. A. McCammon, and L. R. Scott. Paral

lelizing molecular dynamics using spatial decomposition. In Proc. Scalable
High Performance Computing Conference-94, pages 95-102. IEEE Computer
Society Press, 1994.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 131

[8] T. W. Clark, J. A. McCammon, and L. R. Scott. Parallel molecular dy
namics. In Proc. 5th SIAM Conference on Parallel Processing for Scientific
Computing, pages 338-344. SIAM, 1992.

[9] S. E. DeBolt and P. A Kollman. AMBERCUBE MD, Paxallelization of AM
BER's molecular dynamics module for distributed-memory hypercube com
puters. J. Comp. Chem., 14:312-329, 1993.

[10] K. Esselink and P. A. J. Hilbers. Efficient parallel implementation of molec
ular dynamics on a toroidal network: II. Multi-particle potentials. J. Comp.
Phys., 106:108-114, 1993.

[11] D. Fincham. Parallel computers and molecular simulation. Molec. Sim.,
1:1-45, 1987.

[12] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and
D. W. Walker. Solving Problems on Concurrent Processors: Volume 1. Pren
tice Hall, Englewood Cliffs, NJ, 1988.

[13] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.
Comp. Phys., 73:325-348, 1987.

[14] G. S. Grest, B. Dünweg, and K. Kremer. Vectorized link cell Fortran code
for molecular dynamics simulations for a large number of particles. Comp.
Phys. Comm., 55:269-285, 1989.

[15] S. Gupta. Computing aspects of molecular dynamics simulations. Comp.
Phys. Comm., 70:243-270, 1992.

[16] H. Heller, H. Grubmuller, and K. Schulten. Molecular dynamics simulation
on a parallel computer. Molec. Sim., 5:133-165, 1990.

[17] J. F. Janak and P. C. Pattnaik. Protein calculations on parallel processors:
II. Parallel algorithm for forces and molecular dynamics. J. Comp. Chem.,
13:1098-1102, 1992.

[18] S. L. Lin, J. Mellor-Crummey, Β. M. Pettit, and G. N. Phillips Jr. Molec
ular dynamics on a distributed-memory multiprocessor. J. Comp. Chem.,
13:1022-1035, 1992.

[19] A. B. Maccabe, K. S. McCurley, R. Riesen, and S. R. Wheat. SUNMOS
for the Intel Paragon: A brief user's guide. In Proceedings of the Intel Su
percomputer User's Group. 1994 Annual North America Users' Conference.,
1994.

[20] S. J. Plimpton. Fast parallel algorithms for short-range molecular dynamics.
J. Comp. Phys., 1994. To appear.

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

132 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y

[21] S. J. Plimpton and B. A. Hendrickson. A new parallel method for molecular
dynamics simulation of macromolecular systems. Technical Report SAND94-
1862, Sandia National Laboratories, Albuquerque, NM, 1994. Submitted for
publication.

[22] H. Sato, Y. Tanaka, H. Iwama, S. Kawakika, M. Saito, K. Morikami, T. Yao,
and S. Tsutsumi. Parallelization of AMBER molecular dynamics program for
the AP1000 highly parallel computer. In Proc. Scalable High Performance
Computing Conference-92, pages 113-120. IEEE Computer Society Press,
1992.

[23] H. Schreiber, O. Steinhauser, and P. Schuster. Parallel molecular dynamics
of biomolecules. Parallel Computing, 18:557-573, 1992.

[24] W. Smith. Molecular dynamics on hypercube parallel computers. Comp.
Phys. Comm., 62:229-248, 1991.

[25] W. Smith and T. R. Forester. Parallel macromolecular simulations and the
replicated data strategy: I. The computation of atomic forces. Comp. Phys.
Comm., 79:52-62, 1994.

[26] R. van de Geijn. Efficient global combine operations. In Proc. 6th Dis
tributed Memory Computing Conference, pages 291-294. IEEE Computer
Society Press, 1991.

[27] A. Windemuth. Advanced algonthms for molecular dynamics simulation: The
program PMD. published by the American Chemical Society, 1994. In this
volume.

[28] W. S. Young and C. L. Brooks, III. Dynamic load balancing algorithms for
replicated data molecular dynamics, 1994. Submitted for publication.

RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S
on

 J
un

e
29

, 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 10

Portable Molecular Dynamics Software
for Parallel Computing

Timothy G. Mattson1 and Ganesan Ravishanker2

1Intel Corporation, Supercomputer Systems Division, Mail Stop C06-09,
14924 Northwest Greenbrier Parkway, Beaverton, OR 97009

2Department of Chemistry, Hall-Atwater Labs, Wesleyan University,
Middletown, CT 06457

In this paper, we describe a parallel version of Wesdyn; a molecular
dynamics program based on the GROMOS force field. Our goal was to
approach the parallelization as software engineers and focus on portability,
maintainability, and ease of coding. These criteria were met with an SPMD,
loop-splitting algorithm that used a simple owner-computes-filter to assign
loop iterations to the nodes of the parallel computer. The program was
implemented with TCGMSG and Fortran-Linda and was portable among
MIMD parallel computers. We verified the portability by running on several
different MIMD computers, but only report workstation cluster results in
this chapter.

Molecular dynamics (MD) simulations are extremely compute intensive and re
quire supercomputer performance to provide answers in a reasonable amount of
time. Given the high cost of supercomputers, there is a great deal of interest
among the users of M D software to utilize the most cost effective supercomputers
- those based on parallel and distributed architectures.

The algorithms needed to utilize parallel computing are well understood [5], so
one might expect parallel computers to play a dominant role in M D . In practice,
however, very few M D users utilize parallel systems. The reason for this is simple
- while the hardware for parallel computing is readily available, the application
software isn't. This state of affairs is due to the dusty deck problem: users of
M D simulations depend on established programs that are not officially supported
for execution on parallel systems. The problems of dealing with these codes is
further complicated because they were developed long before the advent of parallel
computers and are poorly structured for these systems.

0097-6156/95/0592-0133$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

134 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

One solution to the dusty deck problem is to replace the old programs with
new software designed to take advantage of parallel computers. M D programs,
however, have been painstakingly developed over the years and have attracted a
dedicated following. Those using these codes are unlikely to replace their tried-
and-true M D programs with modern, unfamiliar codes. Hence, there is no way
around the painful reality: to move M D simulations onto parallel computers, these
old dusty deck programs must be ported to parallel systems.

In principle, one should have to parallelize only one of the popular M D pro
grams and reuse the computational kernels among the other codes to yield a full
set of parallel M D programs. Unfortunately, this is not practical. M D programs
are tightly inter-twined with their force fields. These force fields embody the sci
ence of the M D codes and have been designed for different types of problems. The
result is that the M D user community needs all the various M D programs so each
of these must be parallelized separately with little code sharing.

Given the need to port so many established M D programs to multiple parallel
computers, the major outstanding problems in parallel M D pertain to software
engineering - not algorithm design. Therefore, we decided to explore paralleliza
tion of M D programs from a software engineer's perspective. Our first test case is
W E S D Y N [3] - a molecular dynamics program based on the GROMOS [2] force
field. We set the following guidelines for the parallelization project:

• Design the parallel algorithm so any changes to the sequential code will be
simple and well isolated.

• Implement the changes so the parallel and sequential programs can be main
tained within the same source code.

• Support portable execution of the parallel code among different MIMD par
allel systems.

While important, performance of the parallel program was a secondary concern
relative to the issues of quality software engineering. In addition, the primary
target was modest numbers of clustered workstations, though we wanted to write
portable code that could easily move to moderate sized M I M D parallel computers
as well.

We believe that focusing on moderate parallelization is appropriate relative to
the needs of the broadest category of users. While the National Supercomputer
Centers provide some access to supercomputers, the available time on these ma
chines is scarce. By producing a well engineered code that runs on modestly sized
parallel systems, we provide a program that benefits the majority of users.

The paper begins by describing the sequential W E S D Y N program. This is
followed by a discussion of the parallel version of the code using Fortran-Linda [11]
and T C G M S G [6], While we verified portability by running on several parallel
systems, we only present results for workstation clusters in this chapter. This

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 135

decision was made since the results for the M I M D computers are preliminary and
require additional analysis prior to publication.

The Sequential WESDYN program

W E S D Y N [3] is a molecular dynamics program which uses the GROMOS [2] force
field. The program has been heavily used at a number of sites, particularly for
the simulations of DNA, proteins and protein-DNA complexes. It is particularly
well known for is its optimization for vector supercomputers from Cray Research.

Before describing the program in detail, consider a high level view of a molecu
lar dynamics simulation. Molecular dynamics programs simulate atomic motions
within a molecular system by using a simplified representation of the molecular
forces. In the course of the computation, the molecular system evolves through
many successive time steps where for each time step:

• Compute bonded energies and forces.

• Compute non-bonded energies and forces.

• Integrate classical equations of motion to propagate to the next time step.

While the non-bonded energies include terms that require all pairs of atoms to
interact, in most M D programs, only those atoms within a preset cutoff distance
are included. This list of neighbors for the non-bonded calculation is computed
every 10 to 50 steps. In addition, it is sometimes important to constrain the
system to known physical limits using the shake algorithm [13] and/or velocity
scaling.

Finally, most intesting molecular processes do not take place in a vacuum
so a large number of solvent molecules must be included within the simulated
system. To prevent artifacts in the simulation due to the size of the simulation
box, appropriate boundary conditions must be applied to the system.

In W E S D Y N , Hexagonal Prizm Boundary (HPB) conditions [4] are used. The
HPB algorithm applies periodic boundary conditions across the faces of hexagonal
prizm unit cells. The first set of neighboring cells are along each of the six sides
of the prizm. This 7 cell ensemble is then stacked on top and on bottom to give
a total of 20 neighbors for any cell.

In the figure 1, we provide pseudo code for W E S D Y N . The program begins
with the input of user data. Based on this input, the program carries out a
number of energy minimization steps to reduce strain within the initial structure.
This energy minimization uses the same force field as is used in the dynamics
simulation itself - even to the point of calling many of the same energy routines.

Once a low energy initial structure has been found, the molecular dynamics
time-stepping loop is entered. For the first step and at fixed intervals thereafter,

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

136 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

program WESDYN
PROCESSJJSER.COMMANDS
READ_MOLECULAR_TOPOLOGY_FILE
READ_CARTESIAN_COORDINATES
READ_INITIAL_VELOCITIES
MINIMIZE_ENERGY_OF_INITIAL_STRUCTURE
do i = l,number_of ..steps

i f (TIME_TQ_UPDATE_NON_BQNDED_NEIGHBOR_LIST) then
EVALUATE_NON_BONDED_NEIGHBOR_LIST

endif
CALCULATE.INTERNAL_COORDINATE_ENERGIES_AND_FORCES
CALCULATE.GEOMETRIC_CENTERS_OF_CHARGE_GROUPS
CALLJIBSTST ! evaluate solute-solute energies and forces
CALLJiBSTSV ! evaluate solute-solvent energies and forces
CALLJJBSVSV ! evaluate solvent-solvent energies and forces
INTEGRATE_EQUATIONS_OF_MOTION
i f (SHAKE.REQUESTED) then

APPLY.SHAKE
endif
i f (TEMPERATURE_OFF_LIMITS) then

RESCALE.VELOCITIES
endif

end do
end WESDYN

Figure 1: Pseudo-code description of the original sequential version of W E S D Y N

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAV1SHANKER Portable Molecidar Dynamics Software 137

subroutine NBSTST
do i = 1,number.of_charge_groups

number_of_interacting_groups =
C0LLECT_ALL_GR0UPS_WITHIN_CUT0FF

do j = 1,number.of_interacting_groups
SWITCH =

CALCULATE.SWITCHING.FUNCTION(group(i),group(j))
do k = l,number_of_atoms(group(i))

do 1 = l,number_of_atoms(group(j))
Ε = Ε + SWITCH *

ENERGY(atom(k,group(i)),atom(l,group(j)))
F.PAIR = FORCE(atom(k,group(i)),atom(l,group(j)))
F(atom(k,group(i))) = F(atom(k,group(i)))

+ SWITCH * F_PAIR
F(atom(l,group(j))) = F(atom(l,group(j)))

- SWITCH * F.PAIR
end do

end do
end do

end do
end NBSTST

Figure 2: Pseudo-code description of NBSTST.

a list of groups within a certain cutoff distance is computed. This list plays a
key role in the later computation of non-bonded forces and energies. For every
time step, internal energies and forces are computed. This is followed by the
computational core of the program - the computation of non-bonded forces and
energies. This computation is split between three routines:

• NBSTST: Non-bonded routine for solute-solute interactions.

• NBSTSV: Non-bonded routine for solute-solvent interactions.

• NBSVSV: Non-bonded routine for solvent-solvent interactions.

These non-bonded energy routines loop over all charge groups within the molecule.
A l l groups within the cutoff are collected together and then two loops sum force
and energy contributions for each pair of interacting groups. The structure of these
routines are the same so we only show pseudo-code for one of them in figure 2.

Once the energies and full force vectors have been assembled, the system is
advanced to the next time step by integrating the equations of motion. This
uses a leap frog integrator [13]. Optionally, the program enforces a set of input

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

138 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

constraints with the shake algorithm [13] and if necessary scales the velocities to
keep the system temperature within the preset simulation value.

The parallel WESDYN program

We called the parallel version of W E S D Y N , ρ W E S D Y N . Out first decision was
which of the many parallel M D algorithms to use. It is well known that for the
best performance on massively parallel machines, a method based on a spatial
domain decomposition [5] is required. These algorithms, however, are difficult
to program and requires extensive modification to the sequential version of the
program. This violates our goals to maintain a single version of the program's
source code as well as the need for simple parallelization.

Parallel M D algorithms based on atom (or atom group) decompositions, how
ever, are simple to program requiring few modifications to the sequential code.
These methods do not scale well for large numbers of nodes, but with our principle
target being workstation clusters, this was not a problem.

When parallelizing programs, it is important to focus on the computational
bottlenecks. In molecular dynamics, the computational bottlenecks are the non-
bonded energy computations which usually consume more than 90% of the total
elapsed compute time. Generation of the non-bonded interaction lists is also com
pute intensive (complexity 0(N 2)) , but since this is only carried out occasionally
we did not parallelize this operation.

To parallelize the non-bonded computation, we used a technique known as
loop splitting [9]. In a loop splitting algorithm, the program is organized as an
SPMD code with the principle data structures (forces and coordinates) replicated
on each node. This lets one express the parallelism by assigning loop-iterations to
different nodes of the computer. Rather than fixing a particular partitioning into
the code, we used an owner-computes filter. In this method, an if-statement
at the top of the loop tests to see if the node owns that particular iteration of
the loop. This if-statement filters the loop iterations so different nodes compute
different iterations. The advantage of this method is the simplicity with which it
can be added to code. It also provides a great deal of flexibility to the programmer
exploring different load balancing algorithms.

The loop splitting method can be applied to each time-consuming part of the
program. We choose, however, to only parallelize the non-bonded energy terms
and then redundantly update the sequential portions of the code. This seems
wasteful, but given the slow performance of local area networks, it was deemed
appropriate since it can be faster to compute these terms than to communicate
them. For larger systems (50,000 atoms and larger) and larger numbers of nodes,
it is important to parallelize the routines that generate the non-bonded lists. We
have only recently done this and will address this in a later paper.

Once the basic algorithm was selected, we had to select a programming envi-

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 139

ronment that would support parallel computing on a network of workstations as
well as more traditional parallel computers. We used two programming environ
ments in this project: Fortran-Linda [11] and T C G M S G [6].

While a full description of Linda is well beyond the scope of this paper, we
need to understand just enough of Linda to follow the pseudo code for pWES-
D Y N . Linda [7] is based on a virtual shared memory through which all interaction
between processes is managed. These memory operations are added to a sequen
tial language to create a hybrid parallel programming language. For example, in
ρ W E S D Y N , the combination of Fortran and Linda was used [11].

Linda consists of four basic operations. The first operation is called eval () .
This operation spawns a process to compute the value returned by a user provided
function. When the function is complete, the value is placed into Linda's shared
memory. The second operation, called out(), does the same thing as eval()
except out() doesn't spawn a new process to compute the values to deposit into
Linda's shared memory. In other words, eva lO is parallel while out() is sequen
tial.

The other two Linda operations are used to extract information from the shared
memory. If some process wishes to fetch some data and remove it so no other
process can grab the item, the in() instruction is used. Finally, the rd() operation
grabs the data but leaves a copy behind for other processes.

The last concept to cover is how the programmer specifies which items to
access in Linda's shared memory. Items in Linda's shared memory are accessed
by association - not by address. In other words, the Linda programmer describes
the data they are looking for and the system returns the first item in shared
memory that matches that description. If nothing matches the description, the
Linda operation blocks (i.e. waits) until such an item exists. This description,
called a template, plays a key role in Linda.

Templates are defined in terms of the number, types and values of the ar
guments to in() or rd() . In addition, it is frequently necessary to indicate a
location in the program's memory (not Linda's memory) to hold items pulled out
of Linda's shared memory. This is done by specifying placeholders in the template
definition. The symbol used for the placeholder is a "?" preceding the variable
that will hold the item in question.

A few simple examples will clarify this discussion. To create items in Linda's
memory, we would use the commands:

out (' I am a Linda memory i t em ' , 10)
eval (' t h i s i s the output of function g ' , g())
out (10, 2.345)

To grab the last item in this set, one would use the Linda operation:

i n (10, ?x)

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

140 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

which indicates that the in() operation wants to access a two field item from
Linda's shared memory with the first field containing an integer of value 10 and
the second filed containing an item with the same type as x. At the conclusion
of this operation, the variable χ would contain the value from the second field -
in this case 2.345. If the object being fetched from Linda's shared memory is an
array, the in() or rd() statement uses a colon and a variable to hold the length
of the array that was fetched. For example, the statement:

in("an array", 5, ?y:n)

will fetch an item from Linda's shared memory with the first field containing the
string "an array", the second field an integer of value 5, and an array with the
same type as y in the last field. At the conclusion of this operation, the array y
will hold a number of elements given by the value of the integer n.

At this point, we have covered enough Linda to read the pseudo code used in
this chapter. For a more detailed introduction to Linda, see the book by Carriero
and Gelernter [7].

The Linda version of pWESDYN was structured around two processes: a
master and a worker. Pseudo code for the master is given in figure 3. The master
sets up the calculation by spawning a process on the other nodes where the process
will execute the worker-function. This function takes two arguments to provide a
worker ID and a value for the total number of workers.

The master then waits for the workers to finish. This is an example of the use
of Linda's memory to provide synchronization. The master process blocks until
an item in Linda's memory exists that contains two fields: the string 'worker
process' and the return value from the function worker(). The master will
execute one in() for each evalO'ed process thereby assuring that it waits until
everyone is done.

In this version of the code, the master just starts up the job, and waits for
indication of completion. There is no reason the master couldn't transform into a

program ρWESDYN
number_of_workers = READ_NUMBER_GF_WORKERS
do i=l,number_of.workers ! create workers

evaK'worker process ' , worker(i,number_of.workers))
end do
do i=1,number_of.workers ! Confirm the completion

inCworker process ' , ?k)
end do

end pWESDYN

Figure 3: Pseudo-code for pWESDYN master code

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 141

integer function worker(my_ID,number_of.workers)
CALL INITIALIZE_DWNER_COMPUTES_FILTER ()
CALL WESDYN()
return

end worker

Figure 4: Pseudo-code for pWESDYN worker code

worker after the eval-loop. We choose not to do this in order to make performance
evaluation easier.

The worker code is presented in Figure 4. This is also a very simple routine.
The worker sets up the owner computes filter by calling 0WNER^C0MPUTES_SETUP()
(which will be explained later), and then calls the W E S D Y N subroutine.

At this point, the two routines have done nothing but setup the parallel pro
gram. The work carried out by the worker is within the routine, WESDYN(). We
present pseudo-code for the parallel WESDYN() routine in Figure 5. Notice that
all the parallelism is bracketed by # i f def-statements which lets us maintain the
parallel code within the same source code as the sequential program. Also notice
that the difference between the sequential and parallel versions of WESDYN () are
minimal.

There is no substantial difference between the sequential and parallel versions
of WESDYN(). The only exception is within WESDYN() all output is bracketed by
i f def PARALLEL statements to select code that directs only one node to create
and write the output files.

The parallelism is buried within the non-bonded routines. Hence, the only
other changes required for the parallel version of the program are in each of the
three non-bonded energy routines. In this paper, we will only show the changes
within NBSTST () since the other two are of nearly identical structure.

In Figure 6 we show pseudo-code for NBSTSTO. Note that NBSTST() was
changed in only three locations - otherwise the code is identical to the sequential
version. Basically, the outermost loop over charge groups has been amended at
the top of the loop with an owner-computers filter. This mechanism is simple to
implement and lets us conduct future research on load balancing algorithms.

Since different loops are executed by different nodes, the forces are fragmented
across the workers. The global sum after the loops, reconstitutes the fragmented
force vector into a single vector and assures that a copy of this summed vector
resides on each node. In the call to the global sum:

CALL GDSUM(F,3*N+6,W0RK)

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

142 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

#ifdef PARALLEL
subroutine WESDYN()
#else
program WESDYN
#endif

PRQCESS_USER_COMMANDS
READ_MQLECULAR_T0P0L0GY_FILE
READ_CARTESIAN_COORDINATES
READ_INITIAL_VELOCITIES
MINIMIZE_ENERGY_OF_INITIAL_STRUCTURE
do i = 1,number.of.steps

i f (TIME_T0_UPDATE_N0N.B0NDED_NEIGHB0R_LIST) then
EVALUATE_NQN_BQNDED_NEIGHBOR_LIST

endif
CALCULATE_INTERNAL_COORDINATE_ENERGIES_AND_FORCES
CALCULATE_GEOMETRIC.CENTERS_OF_CHARGE_GROUPS
CALL_NBSTST ! evaluate solute-solute energies and forces
CALL_NBSTSV ! evaluate s ο l u t e - s o l v e n t energies and forces
CALL.NBSVSV ! evaluate solvent-solvent energies and forces

INTEGRATE_EQUATIONS_OF_MOTION
i f (SHAKE_REQUESTED) then

APPLY.SHAKE
endif
i f (TEMPERATURE__QFF_LIMITS) then

RESCALE.VELOCITIES
endif

end do
#ifdef PARALLEL

return
#endif
end WESDYN

Figure 5: Pseudo-code for WESDYN() subroutine. Except for trivial changes, this
is identical to the pseudo-code for the sequential W E S D Y N program

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 143

subroutine NBSTST
do i = l,number_of_charge_groups

#ifdef PARALLEL
i f (mine(i)) then

#endif
number_of.interacting.groups =
CQLLECT_ALL_GROUPS_WITHIN_CUTOFF
do j = l,number_of.interacting_groups

SWITCH =
CALCULATE.SWITCHING.FUNCTION(group(i),group(j))

do k = 1,number_of.atoms(group(i))
do 1 = 1,number_of.atoms(group(j))

E_SQLUTE_SOLUTE = E_S0LUTE_S0LUTE + SWITCH *
ENERGY(atom(k,group(i)),atom(l,group(j)))

F.PAIR = FORCE(atom(k,group(i)),atom(l,group(j)))
F(atom(k,group(i))) = F(atom(k,group(i)))

+ SWITCH * F.PAIR
F(atom(l,group(j))) = F(atom(l,group(j)))

- SWITCH * F.PAIR
end do

end do
end do

#ifdef PARALLEL
end i f

#endif
end do

#ifdef PARALLEL
CALL GDSUM(F,3*N+6,W0RK) ! combine results

#endif
end NBSTST

Figure 6: Pseudo-code for the parallel NBSTST subroutine.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

144 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

subroutine GDSUM(F,N,WORK)
my_ID = mynodeO
i f (my_ID .eq. GDSUM_NODE) then !

do i=l,number_of_workers-l !
in('gdsum data' ,?work:len3) !
do j= l ,N !

F(j) = F(j) + work(j) !
end do

end do
do i=l,number_of_workers-l

out('gdsum data_answers',X :N)
end do

else

outOgdsum data ' ,X:N)

in('gdsum data__ans wers ' ,?X:len3)

endif

The node designated to
perform global sum co l l ec t s
energy-force array from a l l
other nodes and accumulates
them.

!Send out copies of summed up
! energy-force array to a l l
! other workers.

! Other workers i n i t i a l l y send
!out t h e i r energy-force arrays
!wait for the sum to come
!back

Figure 7: Pseudo-code for a global sum.

F is an array containing the six energy components plus the 3*N force vector and
WORK is a temporary work array. The operation of a global sum is to carry out an
element-wise sum across the elements of a vector and to place an identical copy
of the result on each node of the parallel computer. In Figure 7 is a routine to
carry out the global sum operation. The algorithm used here is primitive and
far better methods are known [8]. We tested this method against more optimal
methods that use traversal of a balanced binary tree to guide the global sum. We
found that on small workstation clusters, our primitive method was competitive
(and in some cases even faster). This of course would not be the case for parallel
computers with large numbers of nodes.

NBSVSVO was changed along the same lines as NBSTSTO. NBSVSTO was mod
ified along slightly different lines. In this case, it did not include the call to the
global sum and the fragmented force vector was passed onto NBSVSVO. This saved
one global sum operation.

The last component of the program we need to explain is the owner com
putes filter in figure 8. An array (called loop-ownership is initialized to zero
and stored as a global variable (i.e. stored within a common block). This is
a two state filter with zero representing the case where some other node owns
the iteration and one represents ownership of the iteration. In the subroutine
INITIALIZE_OWNER^COMPUTES_FILTER(), we show the cyclic decomposition used
in many M D codes. Finally, the logical function MINE Ο accesses the global array

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 145

subroutine INITIALIZE_OWNER_COMPUTES_FILTER()
common/filter/loop.ownership (MAXATOMS)
do i = l , MAXATOMS

loop.ownership(i) = 0
end do

c
do i=my_ID+l,MAXATOMS,number.of.workers

loop.ownership(i) = 1
end do

end INITIALIZE.OWNER.COMPUTES.FILTER

l o g i c a l function MINE (i)
common/filter/ loop.ownership (MAXATOMS)
i f(loop.ownership(i) .eq. 1) then

return . true.
else

return . fa l se ,
endif

end MINE

Figure 8: Pseudo-code for the code to setup the owner compute filter.

to return the state for the indicated iteration.

This approach to distributing loop iterations may at first seem unnecessarily
complex. However, just by changing one of two simple routines, we can experiment
with different load balancing strategies. This will be the focus of the next phase
of our research.

pWESDYN program: the TCGMSG version

Linda was the first programming environment we used to code pWESDYN. We
wanted to use an additional programming environment for two reasons. First,
Linda is a commercial product and is not available on every system we wished to
utilize. By creating a version of pWESDYN based on a public domain program
ming environment, we could move the programming environment anywhere we
wished. Second, we wanted to verify that the observed performance was due to
the algorithm and not the Linda programming environment.

The additional programming environment we selected was T C G M S G [6]. T C G M S G
is a coordination library consisting of message passing constructs and global com
munication operations. The global operations proved particularly convenient and

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

146 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

program pWESDYN
c a l l PBEGINF ! i n i t i a l i z e TCGMSG
c a l l INITIALIZE.OWNER_COMPUTES_FILTER()
c a l l WESDYN
c a l l PEND ! shut down TCGMSG

end pWESDYN

Figure 9: Pseudo-code for T C G M S G version of pWESDYN.

saved us having to develop these routines ourselves.

Generation of the T C G M S G version of the program was almost trivial once the
Linda version existed. This simple program is shown in Figure 9. The T C G M S G
runtime environment handles process startup. Therefore, the program is rigor
ously an SPMD (Single Program Multiple Data) program in which each node
runs the identical program. The only change we had to make was to provide an
interface between our definition of the global sum and the one that comes with
T C G M S G .

Results

We have studied the performance of pWESDYN on a wide range of MIMD sys
tems. The code was portable from workstation clusters, to shared memory mul
tiprocessors, to distributed memory MIMD supercomputers. Of these systems,
however, we have only fully analyzed the results from workstation clusters. Hence,
in this paper we will only discuss the workstation cluster results and save the other
systems for a future paper.

The cluster in this study was a network of RS/6000 560 workstations with
128 Mb of random access memory on each workstation. These were connected by
an ethernet Local Area Network. This cluster was a shared resource, but it was
managed so dedicated access could be reserved for benchmarking.

To benchmark pWESDYN, we worked with a dodecamer sequence of D N A
known as the B80 canonical structure of the Drew, Dickerson sequence [1],
d (C G C G A A T T C G C G) . We did not use counterions to balance the backbone
charges of the DNA. Rather, in accordance with Manning's counterion condensa
tion theory [10], the phosphate ions were reduced to -0.25.

The D N A dodecamer contained 542 atoms. To provide a 12 Angstrum solvent
shell around the D N A molecule, we added 3580 SPC waters in a hexagonal box.
The system was equilibrated prior to M D by long Monte Carlo simulation on just
the water molecules. Finally, the non-bonded interactions were slowly switched

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 147

Table 1: Wall clock times, Total C P U times, and C P U times within non-bond
routines for pWESDYN on the RS/6000 cluster. This particular calculation was
for 50 energy minimization steps.

numb, of
nodes

T C G M S G Linda numb, of
nodes Wall Cpu(Tot) Cpu(NB) Wall CPU(Tot) CPU(NB)

1 1349.3 1341.68 1281.28 1348.2 1340.0 1280.0
2 777.0 740.3 679.3 799.7 736.5 671.7
3 690.0 543.2 482.0 624.7 532.0 466.4
4 637.5 446.5 385.4 588.9 444.2 375.2
5 665.3 380.9 320.1
6 652.1 339.5 278.5

A l l times are in seconds.

from 7.5 to 11.5 angstroms.

In Table 1 we report on the times for computing 50 energy minimization steps
for the benchmark system. The energy minimization routines call the same paral
lelized non-bonded energy routines, so this benchmark problem provides a usefully
sized problem for evaluating pWESDYN. This data shows that the T C G M S G pro
gram runs at the same speed as the Fortran-Linda program for small numbers
of nodes but by three nodes, it is on the order of 10% slower. We believe this is
due to the the T C G M S G global communication routines. The T C G M S G routines
dynamically allocate memory as needed while the Linda routines reduced runtime
memory overhead by using a static work array.

The maximum speedup in Table 1 is 2.3 which occurs for Linda at 4 nodes.
The speedup in terms of the C P U time, however, is 3.0 at 4 nodes and (in the case
of TCGMSG) continues to improve with more nodes. This discrepancy between
C P U and Wall times is caused by time spent with additional communication as
well as managing additional ethernet collisions as more nodes are added. This
impacts the elapsed wall-clock time but is not accounted to the process C P U
time.

At first, a maximum speedup of 2.3 seems quite disappointing. This is on par,
however, with other molecular dynamics programs running on ethernet clusters.
For example, in [12] a maximum speedup of 2.5 was reported for their ethernet
cluster of RS/6000 560 workstations. This is particularly noteworthy in light of
two facts. First, every facet of the program used in [12] was parallelized - not
just the non-bonded routines. Second, the system studied in [12] was much larger
(greater than 14,000 atoms) than our system (3,922 atoms). Given that both
communication and computation scale as O(N) in a cutoff based M D computation,
one might predict that system size does not impact efficiency. In the complexity
analysis, however, the term multipling Ν is much larger for computation than for
communication so there is far more computation to parallelize for larger systems.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

148 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Table 2: Wall clock times, Total C P U times, and C P U times within non-bond
routines for pWESDYN on the RS/6000 cluster. The calculation was for .35ps of
dynamics, 2 step minimization, and with I/O every .05 ps.

numb, of
nodes

Linda numb, of
nodes Wall Cpu(Tot) Cpu(NB)

1 4853 4749 4514
2 2879 2602 2332
3 2262 1848 1623
4 2073 1476 1250

A l l times are in seconds.

(For a recent example of this effect, see [14]). Given these two effects that favor
the work in [12], our speedup of 2.3 is actually quite respectable.

In Table 2 we show the results for a .35 picosecond (350 steps) M D simulation
with 2 minimization steps prior to the simulation. This test stresses the program in
a full production mode with I/O occurring every .05 picoseconds (50 steps). Notice
that the qualitative trends seen in the minimization benchmark are reproduced for
this M D benchmark. This is the expected result given the portions of the program
that was parallelized. We use this result to justify basing our comparisons on the
simpler, energy minimization calculations.

Conclusion

In this project, we investigated some of the software engineering issues behind par
allel molecular dynamics programs. To this end, we parallelized a major molecular
dynamics program called W E S D Y N [3]. For the parallelization, we set the follow
ing guidelines:

• Design the parallel algorithm so any changes to the sequential code will be
simple and well isolated.

• Implement the changes so the parallel and sequential programs can be main
tained within within the same source code.

• Support portable execution of the parallel code among different MIMD par
allel systems.

Performance of the parallel program was important, but of a secondary concern
relative to the issues of quality software engineering. In addition, the primary
target was modest numbers of clustered workstations, though we wanted to write
portable code that could easily move to moderate sized MIMD parallel computers
as well.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

10. MATTSON & RAVISIIANKER Portable Molecular Dynamics Software 149

On the first two points, we clearly succeeded. The parallel algorithm described
in this paper was simple to implement and required so few changes that a single
source with i f def s was able to contain both the sequential and parallel programs.

The third point - portability to other MIMD computers - will be the focus of
the next phase of this work. While the results are too preliminary to analyze in
any detail, we can briefly relay some preliminary results. The code was portable
in that correct answers were produced on a range of MIMD systems. However, by
having each node separately open and read data files, the code did not perform
well on distributed memory systems. To deal with this effect, we need to add
parallel I /O to our methodology. The common approach is to have an #ifdef in
the code so for parallel systems, only one node accesses the file and then broadcasts
the results to the other nodes. The problem is that within fortran, there is no
easy way to do this without carefully breaking down the messages based on the
size and type of the data. This requires an intimate level of knowledge with the
code and is therefore undesirable with dusty deck codes. We hope to find a way
to semi-automatically apply this transformation.

References

[1] S. Arnott, R. Chandrasekaran, D.L. Birdsall, A.G.W. Leslie, and
R.L. Ratliffe, Nature, Vol 283, p. 743, 1980.

[2] W.F. van Gunsteren and H.J.C. Berendsen, GROMOS88: Groningen
Molecular Simulation System, University of Groningen, The Nether
lands, 1988.

[3] G. Ravishanker, WESDYN 2.0, Wesleyan University, 1993.
[4] S. Swaminathan and D.L. Beveridge, WESDYN 1.0, Wesleyan Uni

versity 1988.
[5] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular

Dynamics," Sandia Technical Report, SAND91-1144, 1993.
[6] R. J. Harrison, "Portable Tools and Applications for Parallel Comput

ers," International Journal of Quantum Chemistry, Vol 40, 847-863,
1991.

[7] N. Carriero and D. Gelernter, How to Write Parallel Programs: A
First Course. Cambridge: MIT Press, 1990.

[8] R.A. van de Geijn, "Efficient global combine operations." Proceed
ings Sixth Distnbuted Memory Computing Conference, p. 291, IEEE
Computer Society Press, 1991.

[9] T. G. Mattson, "Scientific Computation," Handbook of Parallel and
Distnbuted Computing, ed. A. Y. Zomaya, McGraw Hill, 1995.

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

150 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

[10] G.S. Manning, Quart. Rev. Biophys. Vol 11, 179, 1978.
[11] Scientific Computing Associates, Inc., " Fortran-Linda User Guide

and Reference Manual," New Haven, CT, 1993.
[12] B.R. Brooks and M. Hodoscek, "Parallelization of CHARMM for

MIMD machines," Chemical Design Automation News, vol 7, p. 16,
1992.

[13] For a general description of MD methodology, including
SHAKE, see van Gunsteren, W.F., and Berendsen, H.J.C.,
Angew.Chem.Int.Ed.Engl., 29, p. 992-1023, 1990.

[14] J.A. Lupo, "Benchmarking UHGROMOS," Proceedings of the 28
Hawaii International Conference on System Sciences, IEEE Com
puter Society Press, 1995.

RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 11

Advanced Algorithms for Molecular Dynamics
Simulation

The Program PMD

Andreas Windemuth

Department of Biochemistry and Molecular Biophysics
and Center for Biomolecular Simulation, Columbia University,

630 West 168th Street, New York, NY 10032

A collection of algorithms is presented to allow for the efficient com
putation of the dynamics of large systems of macromolecules and
solvent. Application of the Fast Multipole Algorithm coupled with
the Distance Class Algorithm, a multiple timestep method, permits
the evaluation of unlimited long-range interaction at a cost lower
than that of conventional cutoff calculations. A new method for
the calculation of analytical surface areas and derivatives, the Circle
Intersection Method (CIM), is also described. The CIM is at least
2-3 times faster than existing exact analytic methods. All methods
described in this paper are designed to be scalably parallel, mean
ing that resource requirements grow at most linearly with the size
of the system and are inversely proportional to the number of pro
cessing nodes for sufficiently large systems. The experimental pro
gram PMD, designed to implement these methods, is described and
plans for its future development with emphasis on advanced solvent
modeling is outlined. PMD is made freely available at this point
to provide a flexible testing ground for advanced algorithms to all
interested researchers.

Molecular dynamics simulation has become an important tool in computational
chemistry, particularly for the modelling of biological macromolecules (1-4). The
method requires the evaluation of forces acting on each atom in the simulated sys
tem, which often contains a large number of solvent molecules as well as complex
heterogeneous macromolecules such as proteins. The rapid increase in computa
tional capacities has made it possible in recent years to perform simulations of
large solvated systems with tens of thousands of atoms, and even much bigger
systems are becoming feasible.

0097-6156/95/0592-0151$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

152 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

A sizable choice of programs are available to do molecular dynamics simula
tions, most of which reach back more than a decade and were originally designed
to accomodate a few hundred or a thousand atoms (5-7). The traditional way to
deal with the long range Coulomb interactions is to neglect them beyond a certain
distance, thereby causing significant errors (8). The programs were optimized to
run fast on the vector supercomputers that were state of the art at the time, and
it is not clear how well they can be adapted to the upcoming generation of parallel
computers, most of which are based on superscalar microprocessors connected by
a message passing communications network.

The present paper will attempt to address these problems by presenting a
collection of advanced algorithms embodied in the intrinsically parallel and dis
tributed program P M D . The goal of P M D is to provide infinitely scalable parallel
molecular dynamics computation, in the sense that any size of simulation can be
performed in a given time if enough processing nodes are available. The basic
requirement for infinite scaling is that computation time, memory usage and com
munication bandwidth all increase at most linearly with the number of atoms and
decrease inversely proportional to the number of available processing nodes. This
requires distributed storage of atom parameters and coordinates, and the decom
position of the system must be according to spatial regions, in order to eliminate
non-local communication.

Another design principle of P M D is that long range Coulomb forces are not to
be neglected. This is achieved by the adoption of the parallel fast multipole algo
rithm (PFMA) (9), which performs an arbitrarily accurate calculation of the full
Coulomb interactions in a time of order Ο (TV), with Ν being the number of atoms
in the simulated system. To make the computation time for the full interactions
comparable to those of cut-off calculations, the Distance Class Algorithm, a sim
plified version of the Generalized Verlet algorithm (10), is provided in P M D . This
method, similar to an earlier method by Teleman and Jônsson (11), separates the
slowly changing long range Coulomb interactions from the short range interactions
and keeps their forces constant, to be recalculated at regular intervals during the
simulation.

With regards to future development, P M D is intended to be the test bed for
other advanced algorithms, particularly implicit solvent models and continuum
elctrostatics methods, as well as accelerated and directed simulation techniques to
be used in the study of ligand binding and protein folding. Many implicit solvent
models, including the continuum electrostatics methods, require a definition of the
solvent accessible or molecular surface. Moreover, if these models are to be used
with dynamics simulation or minimization, the derivatives of the surface area with
respect to the atom coordinates have to be available. To provide the basis for future
solvent modelling, P M D currently incorporates a novel, very efficient algorithm,
the Circle Intersection Method (CIM), to analytically calculate accessible surface
areas of macromolecules and their derivatives.

Data Distribution

The question of how to distribute the atom coordinates and force field parame
ters across processing nodes is crucial for the design of a parallel algorithm. The
simplest way to parallelize M D simulations is to distribute all parameters and co-

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 153

ordinates to all processing nodes, calculate a different subset of the force field on
each node, and globally combine and add the resulting partial forces. The ad
vantage of this full distribution method is that it requires a minimum amount of
changes in existing code, and load balancing is relatively easy to implement. Also,
no special considerations have to be given to non-local interactions, such as the
long range Coulomb interactions. The scaling of the method is Ο (N/P) for time,
O(N) for storage per node and O(N) for communication bandwidth per node.
The full distribution method is useful for small and medium sized systems, and on
machines with a small number of nodes, each containing sufficient memory to hold
the full system. A fast communication network is necessary, due to the need for
global communication. Obviously this method will quickly reach its limits when
large systems and massively parallel machines are involved.

A better way of data distribution is the force decomposition method (12,13).
The atoms are divided into y/F classes, and each node stores the coordinates
and parameters of the atoms in two such classes, pairing different classes on each
node. This method is more scalable than the full distribution method, but it is
also more difficult to implement. The scaling is 0(N/P) for time, 0(N/P) for
storage per node and 0(N/yfF) for communication bandwidth per node. Thus,
communication is not scalable, albeit much more so than with the full distribution
method.

In order to obtain a fully scalable algorithm, a spatial decomposition method
has to be used, which takes advantage of the spatial locality of the short range
interactions. The simulation volume is divided into Ρ separate regions, and each
processing node is assigned all atoms in one of these regions. Communication of
coordinates and forces takes place only between nodes whose regions are within
the maximum interaction distance of each other. The scaling of this method is
Ο (N/P) for time, Ο (N/P) for storage per node, and Ο((N/P) 3) for communica
tion bandwidth per node. Special consideration has to be given to the long range
interactions in the spatial decomposition method, since only interactions within
a certain distance are covered by the communication scheme. By adding an ad
ditional communication step to the P F M A , in which the values of multipoles are
exchanged, the communication band with per node of the long range interactions
can be made nearly scalable, meaning that its complexity will be 0((N\nN)/P).

In P M D , a flexible spatial decomposition method, called Voronoi Decompo-
sitionÇVO), is used to provide load balancing and allow for arbitrarily shaped
molecules. Each processing node is assigned a position in the simulation region,
and atoms are assigned to whichever node they are closest to. This leads to a de
composition of space into Voronoi polyhedra whose boundaries are defined by the
othogonal midplanes along the distance between each pair of nodes, as illustrated
in figure 1.

There are several advantages to using Voronoi decomposition as opposed to
a more conventional cubic grid decomposition. The most important advantage is
that by shifting the positions assigned to the nodes, the size of the regions can
be varied to provide both static and dynamic load balancing. Load balancing is
needed when the atom density is non-uniform throughout the simulation region, as
well as when the processing nodes run at different speeds or are differently loaded,
a common situation in workstation clusters.

To determine the directions in which the node positions need to be shifted,

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

154 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 1 : Spatial decomposition using Voronoi polyedra. The dark gray region contains
the atoms assigned to a particular node, the light gray region contains interacting atoms
for which coordinates and forces have to be communicated to and from neighboring
nodes. Only two dimensions are shown, actual decomposition is in three dimensions.

each node distributes the actual time U spent on its part of the potential evaluation
to all neighbors. Each node then determines the average t a v g of the load among
itself and its neighbors. The node positions p t are then periodically updated
according to

where the sum is performed over all interacting neighbors of node i. The first
term in the sum pulls overloaded nodes towards other nodes, thereby reducing the
volume of their Voronoi polyhedron. The second term keeps node centers at a
distance from each other to avoid singularities. The particular form of these terms
is highly empirical and has not been fully explored. The factor ω is adjusted to
provide optimum convergence of the procedure.

For the calculation of all short range interactions, each node stores the coor
dinates and parameters of the atoms within its domain, called local atoms, as well
as copies of coordinates and parameters from atoms in neighboring domains, called
ghost atoms. Only ghost atoms that are within the maximum interaction distance
dc from the boundary of the Voronoi polyhedron are actually stored, which, in the
limit of large domains, makes the cross-boundary communication a surface effect
and leads to the 0((N/P)*) scaling of communications.

In order to avoid complicating the development of force fields and simulation
methods, the actual form of decomposition is hidden behind a Data Distribution
Interface (DDI), keeping the overhead associated with developing parallel code to
a minimum and permitting transparent change of the underlying decomposition
algorithm without affecting the Algorithms built on it. For example, dynamic
load balancing is completely transparent and can be achieved simply by calling a
balancing routine at appropriate times during the simulation.

Molecular Structure and Potential Function

P M D was built to implement the widely used C H A R M M force field, the form of

(1)

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 155

which will be summarized in this section. Molecular Dynamics simulation is based
on the numeric integration of Newton's equations of motion:

m t x , = V i i / (x ! , . . . , x j v) . (2)

The vectors X ; denote the positions of all atoms, with i ranging between 1 and
the total number of atoms N. The mt- are the atomic masses and t / (x i , . . . ,ΧΛΓ)
is the full potential function representing all interactions between the atoms. The
potential is composed of bond and nonbond interactions:

U = Ur + U9 + Vφ + υ ω + tfvdW + ί/coulomb. (3)

The bond interactions Ur, Ue, i / ^ , and Uu represent the forces between atoms
generated by their chemical bonding, and are approximated by the following ex
pressions:

Ur = E ^ „ (r , n i „ - r 0 , n) 2 (4)
n=l

Ue = E ^ n (^ n i n f c n - ^ n) 2 (5)
71 = 1

υΦ = Σ k<t>* [1 ~ COSn n (0 i n i w f c n / n - 0o,n)] (6)
n=l

Νω

1/ω = Σ kvAUinjnkJn ~ ω0,η)2 (7)
n=l

Ur is composed of an harmonic stretching force between two atoms in and jn for
each one of Nr bonds. The quantities kr>n and ro,n are parameters to the force field
and depend on the properties of the atoms i n and jn as expressed by their atom
types. The other terms are similarly defined to describe harmonic bending of the
angle between two atoms, a periodic potential for torsions involving four atoms
and an harmonic improper torsion potential to provide planarity constraints in
ring structures as well as tetrahedral centers. The potential depends on the atom
coordinates through the bond lengths = |x, — χ^·|, the bond angles 0 ^ , and the
proper and improper torsion angles φ^ι and ω^ι (6).

At the center of the force field parametrization are the atom types. Atoms
are assigned one of several types according to their elemental nature, hybridiza
tion state and other relevant chemical properties. Bonds, angles, dihedrals and
improper torsions are then assigned to pairs, triples and quadruples of atoms ac
cording to the chemical structure of the molecule. The parameters (fcr>

&0,7η0ο,η5 Jty.n» nn, Φο,η, ^ω,η,^ο,η) are tabulated for each possible combination of
atom types. They are usually obtained from fitting to experimental results or from
quantum chemical calculations.

In order to simplify the assignment of atom types and bond topology, the
assignment is done for small groups of atoms called residues, which can be anything
from a water molecule to a chromophore. The most common residues are the
amino acids that proteins are composed of. Larger structures such as proteins are
assembled from the residues by means of patches, i.e. rules for connecting together

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

156 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

residues. Patches specify the modifications and additions that have to be applied
to the participating residues in order to describe the mechanics of the combined
system correctly. One example for a patch in proteins is one describing peptide
bonds, another is one for disulfide bonds.

For proteins, all that is needed to assign the bond energy parameters is the
sequence of residues and a specification which cysteine residues should be involved
in a disulfide bond. P M D then automatically applies the appropriate peptide and
disulfide patches to generate the complete molecular structure. Solvent molecules
can be specified as residues with a replication number specifying the number of
solvent molecules that are present. C H A R M M format residue topology files and
parameter files are read by P M D to define the residues and assign the parameter
values.

The remaining terms in equation 3 describe the nonbond potential. They are
composed of van der Waals interactions described by the Lennard-Jones potential

and Coulomb interactions
^Coulomb = Σ W

and depend on the atom coordinates solely through the interatomic distances ry =
|xt- — X j | . The parameters Ay and By are tabulated for all combinations of atom
types. They are usually derived from per-atom parameters et and σ,· in the following
way:

^ = 4(2t±a) l f^, % = 4 (^)W (10)
but there may be exceptions where Ay and By may be specifically assigned for
certain pairs of atom types.

The partial charges gt- are specified independently of atom type in the residue
topology file and are chosen to approximate the actual charge density of the
residues as derived from quantum chemical calculations. The dielectric constant
is normally e = 1, but may be set to something larger to account for electronic
polarization effects.

The bond potential does not require much time to calculate, since the number
of bonds, angles and dihedrals is on the order of the number of atoms. The
nonbond potential, however, is defined as a sum over all pairs of atoms, i.e. a
sum with N(N — l) /2 terms. For large systems, full calculation of this sum is
prohibitive. The Lennard-Jones potential (equation 8) used to describe the van
der Waals interactions is short range, i.e. its strength diminishes quickly outside a
certain range. Thus, it can be calculated in good approximation as a sum over all
pairs within a maximum distance d c , the cutoff distance.

The Coulomb potential (equation 9), however, is long range, i.e. it does not
decrease with distance enough to make up for the increasing number of atoms at
that distance. It has traditionally also been calculated using a cutoff, but this has
been known to be a bad approximation for macromolecular systems (8). There
are often extended charge imbalances in proteins such as helix dipoles, charged
side chains, and dipolar membranes, the electrostatic properties of which may

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 157

contribute considerably to the structure and function of the system. It is precisely
to address this problem of the long range nature of the Coulomb interactions,
that the Fast Multipole Algorithm is used in P M D , which will be the focus of the
following section.

The Fast Multipole Algorithm

In order to efficiently compute the full Coulombic interactions in large molecular
systems, the Fast Multipole Algorithm as proposed by Greengard and Rokhlin
(14,15) and later implemented by Leathrum and Board (9,16) is used in P M D .
The algorithm allows the calculation of the full Coulomb interaction to a given
numerical precision in a time proportional to the number of atoms. It thus satis
fies the requirement of scalability. The implementation by Leathrum and Board,
called the Parallel Fast Multiple Algorithm(PFMA) is very efficient, due mostly to
the precomputation of coefficients and the use of spherical harmonics, and it was
designed to run on parallel machines, making it very suitable for use in P M D .

A similar algorithm, the Cell Multipole Method, was developed independently
by Ding and Goddard (17). Speedups similar to the F M A have been observed with
the C M M , and tested for systems with up to a million atoms. The C M M is based on
the physically more intuitive cartesian representation of multipoles, while the F M A
is based on the mathematically more appropriate spherical harmonics, functions.
Since cartesian multipoles of higher order are more cumbersome to implement than
the corresponding spherical harmonics, the accuracy of the C M M as reported by
Goddard is restricted to the octupole level, corresponding to ρ = 3 in the F M A
terminology below, while the accuracy of the F M A is limited only by memory
and C P U time requirements. No parallel implementation of the C M M has been
reported.

Some novel improvements were made to the P F M A code upon integration into
P M D , including a pruning of chargeless volumes to avoid unnecessary computation
and storage, and a task distribution based scheme for load balancing.

The Fast Multipole Algorithm is based on the expansion of the Coulomb
potential of a bounded charge distribution in multipoles

* w = 4 * £ t f $ # . («)

where (r, 0, φ) are the spherical coordinates associated with the cartesian coordi
nate vector x, and Y/ m (0, φ) are the complex valued spherical harmonics functions.
This expansion is exact and valid everywhere outside the smallest sphere enclosing
all charges. For a collection of η point charges at positions χ,·, the coefficients
Mim are given by

Mlm = YiqiYl*m(ei,<pi)ri', (12)
1=1

where Yj*m denotes the complex conjugates of the spherical harmonics functions.
In addition to the multipole expansion in equation 11, the F M A also uses the local
expansion

*(χ)=4π Σ «Λ (13)
l,m

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

158 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

which is equivalent to a Taylor expansion and valid within the largest sphere around
the origin that does not contain any of the charges contributing to it.

The expansions in equations 11 and 13 are exact, i.e. within their regions of
validity they provide the exact value of the potential. However, they also consist of
an infinite number of terms. The approximation in the F M A consists of truncating
the expansions after a certain number of terms with the truncation limit ρ being
the largest value of / included in the sums. It has been shown that the same level
of truncation is appropriate for both the multipole and the local expansions. The
essential idea of the F M A is to build a hierarchy of multipoles, each containing the
contribution of a subset of charges of limited extent. For efficiency, cubic boxes
are used in the F M A . The smallest boxes on the lowest level contain only a small
number of charges (10-20), the boxes on successively higher levels are the union
of eight lower level boxes, until one single box on the highest level contains all
other boxes, and therefore all charges. The number of levels L is chosen to provide
the optimal tradeoff between multipole and direct interactions and depends on the
number of charges in the system as Ν ~ SL.

The multipoles associated with the lowest level boxes are calculated according
to equation 12. Multipoles of higher level boxes are calculated not from the charges,
but from the multipoles of the lower levels. To obtain the multipole expansion
for one box, the eight multipole expansions of its subboxes are translated to a
common origin and added up. Translating the origin of a multipole expansion by
a translation vector xt involves finding the coefficients of Φ ;(χ) such that

Φ'(χ) = Φ (χ + χ ,) . (14)

The relationship between the old and new coefficients is linear, i.e.

ML = Σ Tli^M'm., (15)
/',m'

and the translation matrix is given by

rpMM _ A„ (2/ + 1) ai<m>ai-l>,m-m' (^ W-l v * (û , χ /1 βχ
T ' ^ - ^ { 2 l l + 1) { 2 l _ 2 l l + 1) a J - n) Yt-,.m-m-VM (16)

with the auxiliary numbers a/ m defined as

« / m = (- l) / + m J A n ^t,), rr (17)
y 4π(/ + my. (I — m)\

Since the coefficients T{^fm, depend solely on the translation vector x t , and since
in the regular cubic arrangement of multipoles the same translation vectors occur
many times, the coefficients can be precomputed for the L levels and 8 possible
directions and then reused very efficiently during the calculations.

After the multipoles Φ(χ) of all boxes have been calculated, a local expansion
Φ(χ) is constructed for each box, describing the potential inside the box caused by
all distant charges, i.e. all charges except those in the same or neighboring boxes.
An essential element of the algorithm is the recursive use of the local expansion
from the next higher level, i.e.

Φ / (χ) = Φ ,

/(χ) + Φ/_ι(χ), (18)

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 159

where Φ{(χ) is the local expansion of all multipoles not already contained in
Φ/_ι(χ). The number of those multipoles is never larger than 6 3 — 3 3 = 189,
thus the number of operations for this step is independent of the size of the system
for each box. Since the number of boxes depends linearly on the number of charges,
this step, like all others, is scalable. The coefficients of the local expansion of a
given multipole expansion are given by

4 = E C M w (19)
/',m'

with the transformation matrix

α\ι >α\ (— l) ' + m '
T ' ^ W = 4 π (2 Ζ ' + 1) (2 Γ + α ? α 1 + ί , , _ „ , r f + ' + 1 Y ^ — ' ^ ^ ^

and they can be precomputed in the same way as T ^ J i m J . Most of the time spent
evaluating the multipole interactions is in this transformation. The translation of
Φ/_ι(χ) to the origin of Φ/(χ) is done similar to the translation of multipoles, i.e.

L'lm - Σ Ttm,l'm'Ll'm'- (21)
Ι',τη'

with the transformation matrix

° - " (2 l + 1 ™ T l) a , . , . (- r / ' ' (2 2)

The local expansions $/(x) are calculated in a hierarchical, sequential manner such
that only one set of expansion coefficients need to be stored per level at any one
time, thereby greatly reducing the storage requirement for the F M A . Once the
local expansions at the lowest level are known, the interaction energy of a
particle X ; with all other atoms not within neighboring boxes is given as

ί/ψ(χ,·) = | φ ^ (χ , ·) , (23)

where Φ^,· is the local expansion in the box of particle i. The total Coulomb
potential is then

t / C o u i o m b = f : ^ ^ , i (x i) + E — · (2 4)
»=i € (ij) € T i i

The pair sum (ij) in the second term is restricted to pairs within one box or
between neighboring boxes.

The parallel implementation of the F M A is currently quite straightforward
and not entirely scalable in storage and computation. The atom coordinates are
distributed globally during the long range step, and the F M A is divided into a
number of tasks, which are assigned to processing nodes according to balancing
requirements. The tasks are created by restricting the F M A to subvolumes of
the total grid and calculating the local expansions only in that subvolume. A l l
multipoles are calculated on each node. This simple technique eliminates the need
for communication of multipoles, but it is limited to about 1 million atoms and
a few hundred processors. A fully scalable parallel version of the F M A is under

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

160 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

development and will relieve these limitations by making use of data distribution
and a hierarchical multipole communication scheme.

The Distance Class Algorithm

The Fast Multipole Algorithm makes the calculation of the full Coulomb interac
tions linear in complexity, but it still takes considerably more time to execute than
a cutoff based calculation. The Distance Class Algorithm (DCA) has been devel
oped for P M D to reduce the computation time per timestep further such that it is
comparable in cost with the much less accurate cutoff methods. To keep track of
the short range interactions, a pairlist is maintained and updated regularly using a
very efficient scalable, grid based algorithm. The D C A differs from other multiple
timestep methods (10,11,18,19) mainly in that it is simpler. Application of more
advanced methods could provide better accuracy and is being considered for future
versions of P M D .

In molecular dynamics simulations, fast motions are generally vibrations or
rotations of atoms that don't take the atoms further than about 1Â from their
average position. This is a property of the force field that is due to the restrictive
nature of bonded interactions and van der Waals interactions which prohibits the
atoms from moving freely. The average positions around which atoms vibrate
change much more slowly. Because of this separation of time scales, the Coulomb
interaction between distant atoms changes very little during a short period of time.
It is thus a good approximation to separate interactions into distance classes and
to keep the potential and forces resulting from all but the first class constant for
several timesteps.

The Coulomb interactions are divided into Nc different terms

t/Coulomb = Σ Σ — (25)

*=i {iJh € V i j

by decomposing the set of all pairs {i, j} into Nc disjoint sets {i,j}k called distance
classes. The decomposition is performed by first specifying a number of distance
values d\, d<i,... d^c such that

di < d2 < ... < dNc = oo (26)

and then classifying all pairs of atoms into classes according to their distance rtJ-
in space

{iJh = {(», j) : dk < r{j < dM}. (27)

The Distance Class Algorithm in P M D uses two classes, one for short range in
teractions and one for long range interactions. The short range interactions are
calculated from the same list of atom pairs that is used to calculate the van der
Waals interactions, which are truncated at the cutoff distance dc. The long range
interactions are calculated by subtracting the short range potential and forces from
the full potential and forces calculated using the Fast Multipole Algorithm. They
are then stored and applied as a constant force until either an atom is detected
to move more than a given tolerance dto\, or until a certain number of steps N\nt

is counted since the last update. The interval of constant force JVi n t need not be

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 161

longer than about 20, at which point the F M A becomes comparable in C P U time
usage to the short range interactions. The tolerance dto\ ensures that there is an
upper bound on the error incurred by the D C A .

This combination of F M A and D C A makes it possible to calculate the full
Coulomb interactions of large systems in a time comparable with conventional
cutoff calculations. Indeed, since the long range interactions are not neglected,
the class separation distance can be chosen shorter than the typically used cutoff
distance, making the F M A / D C A method both more accurate and faster than cutoff
calculations. Fig. 2 illustrates the performance gain compared to a direct pairwise
full Coulomb calculation.

102 103 104

Number of atoms

Figure 2: Performance of the FMA and the combined F M A / D C A methods compared to
a full pairwise Coulomb calculation, plotted logarithmically against system size. Curves
for dc = 7Â and dc = 9Â are shown. With 24,000 atoms, almost a factor of 100 is gained
by using FMA and DCA.

The tolerance is chosen to be d t o i =1Â, which provides on the order of 20
steps in which the pairlist does not need to be rebuilt. In accordance to that,
and because larger intervals do not gain a significant performance increase, the
maximum pairlist rebuild interval is set to N\nt = 20. This provides an accuracy
better than 1% for the electrostatic forces compared with full calculation at each
step. This accuracy corresponds well with the accuracy of the F M A truncated at
ρ = 4 terms, which is about 0.5%.

The evaluation of short range interaction, i.e. all interactions between atoms
no more than the cutoff distance dc apart, is done most efficiently using a pairlist.
For each atom a list is constructed that contains the numbers of all atoms within the
cutoff distance. In order for the procedure to be scalable, a grid algorithm is used to

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

162 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

preselect candidates for the pairlist, cutting the time for constructing the pairlist to
O(N). Since each node needs only the pairlist for local atoms, the parallel scaling
of pairlist generation is Ο (N/P), satisfying the scalability requirement. When the
pairlist is updated, the distance classes change and the long range interactions
have to be recalculated. It is therefore natural and necessary to couple pairlist
generation and long range force evaluation to always occur together.

For efficient pairlist generation, a cubic grid is constructed, with a grid con
stant equal to the cutoff distance. Each atom is assigned to the closest grid point,
producing a list of atoms at every grid point. Next, a loop through neighboring
pairs of grid points is executed and for each pair of grid points all possible atom
pairings are examined. Those atom pairs that are within the cutoff distance are
entered into the pairlist. Only half of the neighbors of a grid point need to be
considered, since each pair of atoms would otherwise be listed twice.

In the parallel case, communication time can be reduced by adding an addi
tional criterion to the pair selection. Each pair of neighboring processing nodes
has a directed link assigned to it. This link points to the node which will calculate
all non-bond interactions across the interface between the node regions. Since a
node needs to know only the coordinates of those ghost atoms with which it is
to calculate the interactions, communication can be cut in half by not updating
unused ghost atom coordinates. Thus, the rules for including pairs in the pairlist
are as follows: For local pairs, an atom is paired with another only if its grid
point number is higher. For non-local pairs, an atom is paired with another only
if its node is responsible for calculating the interaction^ The first criterion allows
the loop over grid points to be cut in half, the second reduces the ghost atom
communication.

While the additional criteria complicate the code, they have no effect on the
efficiency of the algorithm when only one node is used, and they greatly reduce
communication when the code is run in parallel.

Solvent accessible area and the Circle Intersection Method

Simulation of macromolecules in vacuum is rarely an appropriate model for the
real system. Solvent effects are crucial for determining protein structure and for
almost all biological processes (20-24). Solvent effect can be roughly divided into
two areas: Hydrophobic effect and electrostatic properties. The hydrophobic effect
is due to the self interaction of water, and occurs when water would rather be next
to itself than next to a solute molecule. The electrostatic effect derives from the
high dielectric constant of water, which attenuates and attracts electric fields,
leading to suppressed Coulomb interactions and dielectric pressure forces. There
is also an electrostatic effect from ions in the solution, which further attenuates
electric fields.

The easiest way to model solvent is explicit solvent simulation. A large num
ber of water molecules are included in the system, and given an appropriate water
model, all properties of the solvent-solute interactions should emerge from the
microscopic model. While this is feasible, it is also very expensive in terms of com
puter time. P M D is well suited for explicit solvent calculations, since its scalability
provides for the large and very large systems that generally result from building
explicit solvent models. However, it is often desirable to use more sophisticated

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 163

models, and the future development of P M D is directed towards providing both
implicit solvent models as well as continuum electrostatics methods for solvent
modeling.

Implicit solvent models attempt to reproduce solvent effects by defining a
potential, often with a number of parameters fitted to observations, that can be
easily calculated from atom positions in the same manner as the other non-bonded
interactions. Several such models have been proposed, some based on solvent
accessible surface areas (25-29), others based on atom coordinates only (30-32).

Continuum electrostatics is a more rigorous aproach to calculating the electro
static part of the solvent effects (24). It is based on solving the Poisson Boltzman
equation with the solute represented as a low-dielectric cavity in a high dielectric
medium, with the molecular surface separating the two regions. Most commonly a
finite difference method is used to solve the Poisson Boltzman equation (20,33-35),
but the boundary element method is also used (36-40).

A l l continuum electrostatics methods as well as most implicit solvent methods
depend on a representation of the solvent accessible or molecular surface, which
separates the interior solute volume from the exterior solvent space. Thus the
first step towards solvent modelling should be a fast and scalable method for the
computation of molecular surface areas and their derivatives. P M D currently im
plements the Circle Intersection Method (CIM), a fast method for the calculation
of the solvent accessible surface of the solute, including the derivatives to obtain
forces. The CIM essentially follows Conolly (41) with regards to the geometry of
the surface, but uses a novel method for finding vertices. The computation time
required is 2-3 milliseconds per atom on a SGI Indigo 2/R4400 and scales linearly
with the number of atoms for arbitrarily large molecules.

The CIM is estimated to be about thirty times faster than the original method
A N A , and approaches the MSEED method in speed (42). Unlike MSEED, how
ever, P M D measures the complete surface including cavities with correct treat
ment of complete circles of intersection, which have been found to occur quite fre
quently in larger proteins. Table 1 shows a comparison of P M D with M S E E D and
A N A R E A , a method developed by Richmond (43) and modified by Wesson (27).
A N A R E A was the fastest exact analytic program available for this comparison.
The Brookhaven Protein databank files for crambin (lcrn, 327 atoms), pancreatic
trypsin inhibitor (lpti) with added hydrogens (568 atoms), T4 phage lysozyme
(21zm, 1427 atoms), M H C class I receptor (lvaa, 3235 atoms), a poliovirus shell
protomer (2plv, 7162 atoms), and the photosynthetic reaction center (lprc, 10288
atoms) were used. In those cases where full circle intersections don't exist (lcrn,
lp t i , and 21zm), the P M D result for the outer surface area agrees almost per
fectly with MSEED. Where full circles exist, MSEED erroneously reports larger
surface areas. P M D and A N A R E A both measure the surface including cavities,
and agree well for all test cases. The agreement is not as good as the one between
P M D and MSEED, indicating that A N A R E A is somewhat less accurate than P M D
and M S E E D . The CIM and MSEED are both scalable, i.e. scale as 0(N), while
A N A R E A scales as 0(N2) and will slow down more and more as molecules get
larger.

Ultimately, P M D is planned to provide solvation modelling with the Finite
Difference Poisson Boltzmann (FDPB) method for the electrostatics and the CIM
surface for the hydrophobic effect. Several methods have been suggested for de-

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

164 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Table 1: Solvent accessible areas of proteins calculated with three different pro
grams. Areas were calculated with P M D , with A N A R E A , with M S E E D , and with
P M D omitting the cavities (pmd-cav). The A N A R E A code used was not dimen
sioned large enough for the photosynthetic reaction center (10288 atoms).

Accessible surface area CPU time (ms/atom)
Atoms pmd anarea mseed pmd-cav pmd anarea mseed

327 2976.4604 2976.4604 2974.2777 2974.2777 2.23 5.05 1.65
568 4031.4016 4031.4011 4021.3169 4021.3169 2.22 5.66 1.42

1427 9123.6446 9123.6455 9098.2890 9098.2891 2.40 6.22 1.79
3235 17975.5711 17975.5840 17903.8977 17901.2460 2.58 6.73 2.04
7162 35036.5994 35036.7813 34854.0903 34808.7272 2.77 7.64 1.77

10288 43824.2222 n/a 43313.6653 43294.5298 3.07 n/a 1.97

riving forces from continuum electrostatics methods (44-46), demonstrating the
feasibility of that approach.

Implementation and Performance

P M D was designed to be modular and very portable. The structure of the program
is object oriented, although the programming language used is ANSI C, in the in
terest of portability. Fig. 3 shows an overview of the basic parts of P M D . Currently,
P M D is most useful as a library of subroutines, a high level user interface is not
yet included.

A l l aspects of data distribution and parallelism are contained in the Data Dis
tribution and Parallel Adaptor modules. The parallel adaptors, particularly, define
a small, simple set of routines that are used exclusively to access the message pass
ing features of the underlying parallel architecture. This makes P M D extremely
portable from one parallel machine to another. Reimplementation of the parallel
adaptor can be done in a few hours.

The modular design of P M D provides a general framework to which new
functionality can be easily added without need to change most of the program.
Individual modules can be replaced by completely different implementations with
out altering the function of the rest of the system. For instance, in the course of
development the Data Distribution module was completely redesigned to introduce
load balancing, switching from a cubic grid distribution to the current distribution
based on Voronoi polyhedra. None of the modules built on the Data Distribution
module needed to be changed significantly and they continued working with the
new distribution.

Central to this modularity is the definition of an abstract interface defining
how application modules are to access the underlying P M D data structures, with
out having to be aware of the form of data distribution, or the fact that data is
distributed at all. This interface has evolved during the development of P M D , and
documentation will be forthcoming when the specifications have sufficiently solid
ified. This will allow developers to use P M D as a library from which to develop
their own molecular modelling applications without having to know the P M D code
in detail, and to take advantage of the infrastructure for parallelism and molecular
structure description of P M D without undue extra effort.

P M D is continually under development, and source code versions are made

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 165

available periodically to encourage researchers to use P M D for their own purposes.
The only conditions attached to the distribution are 1) that no part of it be used
in commercial applications without prior consent of the author, 2) that any addi
tions or modifications be made freely available on the same basis as the original
code. The current version of the P M D distribution can be obtained by anonymous
ftp from the machine cumbnd.bioc.columbia.edu. An electronic mailing list for an
nouncements of interest to users of P M D is maintained at Columbia University.
To subscribe, send electronic mail to pmd-request@cumbnd.bioc.columbia.edu, or
contact the author of this paper.

UNIX-commands, command files, graphical interface

i i i i i i i i i i P o

i | | l : l l : i i l ;Mp^
coordinates, residue topology, parameters

; : Basic Routines
.grids, hash tables*streams, etc. serial, CM-5, TCGMSG, PVM,

Figure 3: Diagram of the principal components of PMD. Not everything mentioned in
the graph is actually implemented, particularly there is no graphical interface, no PVM
adaptor (which is trivial to add) and no solvation force field.

P M D was implemented and tested on a variety of workstations, and parallel
adaptors exist for workstation networks, for the Thinking Machines CM-5 and
for the Intel Paragon. The network and the Paragon implementation both use a
T C G M S G adaptor, the CM-5 has a specific adaptor. Implementations for P V M
and the Cray T3D are planned. Donations of development time on any kind of
message passing parallel machine will be gratefully accepted and quickly rewarded
with a P M D implementation for that machine.

To evaluate the performance of P M D both on parallel machines and on com
mon workstations, test calculations were done using a realistic model of a P O P C
lipid bilayer patch with water consisting of 23,975 atoms. Some results are reported
in table 2. No results are given for the CM-5, since P M D does not use the vector
processors of that machine, rendering the benchmark meaningless. However, P M D
was run successfully, if not fast, with 256 processors on the CM-5, demonstrating
the high degree of parallelism possible with P M D .

The communication code associated with the Voronoi decomposition topology
is not well optimized yet, but, nevertheless, quite respectable speedups can already
be achieved on the Intel Paragon, as well as on a network of HP-735 workstations
interconnected using an A T M switch. Fig. 4 shows the dependence of the calcula-

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

http://cumbnd.bioc.columbia.edu
mailto:pmd-request@cumbnd.bioc.columbia.edu

166 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Table 2: Benchmark results for a realistic model of a P O P C lipid bilayer patch
consisting of 23,975 atoms. Times are given in seconds for the F M A calculation,
the pairlist update and the evaluation of short range electrostatic and van der
Waals interactions. Also shown is the average total time per step, assuming a long
range update interval of i V i n t = 20. The A L R is a Pentium desktop P C running
N E X T S T E P , the HP-735 A T M entries refer to a workstation cluster connected via
an A T M switch, using 4 resp. 8 machines.

System PFMA pairlist short average
ALR 586/60 NeXT 150 40 18 27.50
SUN SPARC-10 110 30 14.5 21.50
SGI Indigo/R4000 90 21 13 18.55
DEC 3000/500 75 14 10 14.45
IBM-590 55 27 7.4 11.50
SGI Indigo/R4400 55 15 7.6 11.10
SGI Onyx/150MHz 54 14 7.3 10.70
HP 712/80MHz 57 19 6.8 10.60
HP 735/lOOMHz 34 11.5 3.9 6.18
Intel Paragon(16) 20 3.2 2.2 3.36
HP-735 ATM (4) 10 2.7 1.1 1.74
HP-735 ATM (8) 1.10

Figure 4: Parallel benchmark results for the Intel Paragon parallel computer and for
a cluster of HP-735 workstations connected via an ATM switch. The same 23,975 atom
system is used as in table 2. The difference in scaling between the workstation cluster
and the Paragon is due primarily to the difference in speed between the individual
nodes rather than to the communications network. These results are based on new,
non-optimized communication code, scaling is expected to improve in future releases.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 167

tion time on the number of nodes. At least 50% of the communication can still be
eliminated by a more optimized implementation which will hopefully be available
in the next release of P M D .

Discussion and Outlook

It should be clear from this presentation that P M D is not a finished program, but
should be viewed as a workbench for algorithm development in molecular mod
elling. The features that make it unique are that it is fast, fully scalable and does
not neglect long range interactions. Using the F M A , P M D removes the tradeoff
that has traditionally been required between speed and long range interactions,
and by its scalable nature it also removes most barriers to the simulation of very
large systems. Moreover, P M D makes large parallel supercomputers more accessi
ble, since the same program that runs on a desktop workstation will run identically
on the parallel machine.

Since the basic algorithms and data distribution mechanisms are largely in
place, future developments will concentrate on application oriented issues. Mecha
nisms are needed to build structures of proteins and explicit solvent models when
coordinates are not known. Algorithms to add hydrogens and sidechains to pro
tein backbones are being considered. Mostly, however, P M D will be extended to
provide better solvation treatment, on the basis of solvent accessible surface areas
and the Poisson Boltzmann equation. Methods for the derivation of forces from
continuum electrostatics will be explored.

Acknowledgment

This work was supported by the National Center for Research Resources division
of the Biomedical Technology Program at the NIH, through a Research Resource
grant (P41 RR06892) at Columbia University and NSF grant (DIR-9207256) to
Barry Honig. A n early prototype of P M D was developed with support by Klaus
Schulten of the NIH Resource for Concurrent Biological Computing at the Uni
versity of Illinois at Urbana-Champaign, who also provided computer time for
the A T M cluster benchmarks. Tim Mattson of Intel Corp. generously provided
computer time and advice on the Intel Paragon parallel supercomputer.

Literature Cited

1. Levitt, M.; Lifson, S. J. Molec. Biol. 1969, 46, 269.
2. Karplus, M.; McCammon, J. A. Ann. Rev. Biochem 1983, 53, 263.
3. Karplus, M. Molecular dynamics of proteins. In Structure and Dynamics of

Nucleic Acids, Proteins, and Membranes; Clementi, E.; Chin, S., Eds., pp
113-126, London, 1986. Plenum Press.

4. Clementi, E.; Corongiu, G.; Aida, M.; Niesar, U.; Kneller, G. In MOTECC,
Modern Techniques in Computational Chemistry; Clementi, E., Ed., pp 805-
882. ESCOM, Leiden, 1990.

5. Weiner, P. K.; Kollman, P. A. J. Comp. Chem. 1981, 2, 287-303.
6. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan,

S.; Karplus, M. J. Comp. Chem. 1983, 4(2), 187-217.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

168 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

7. van Gunsteren, W. F. GROMOS:Groningen Molecular Simulation Program
Package. University of Groningen, The Netherlands, 1987.

8. Loncharich, R. J.; Brooks, B. R. Proteins 1989, 6, 32-45.
9. Board, Jr., J. Α.; Causey, J. W.; Leathrum, Jr., J. F.; Windemuth, Α.; Schul-

ten, K. Chem. Phys. Lett. 1992, 198, 89-94.
10. Grubmüller, H.; Heller, H.; Windemuth, Α.; Schulten, K. Molecular Simulation

1991, 6(1-3), 121-142.
11. Teleman, O.; Jönssen, B. J. Comp. Chem. 1986, 7, 58-66.
12. Plimpton, S.; Hendrickson, B. Technical Report SAND94-1862, Sandia Na

tional Laboratories, 1994.
13. Plimpton, S. Technical Report SAND91-1144, Sandia National Laboratories,

1991.
14. Greengard, L.; Rohklin, V. J. Comp. Phys. 1987, 73, 325-348.
15. Greengard, L. The Rapid Evaluation of Potential Fields in Particle Systems.

MIT Press, Cambridge, MA, 1988.
16. Leathrum, Jr., J. F.; Board, Jr., J. A. Technical report, Duke University,

Department of Engineering, 1992.
17. Ding, H.-Q.; Karasawa, N.; Goddard, W. A. J. Chem. Phys. 1992, 97, 4309-

4315.
18. Tuckerman, M. E.; Berne, B. J.; Martyna, G. J. J. Chem. Phys. 1991, 94,

6811-6815.
19. Scully, J. L.; Hermans, J. Molecular Simulation 1993, 11, 67-77.
20. Perutz, M. F. Science 1978, 201, 1187-1191.
21. Warshel, Α.; Russell, S. T. Q. Rev. Biophys. 1984, 17, 283.
22. Honig, B.; Hubbell, W.; Flewelling, R. Ann. Rev. Biophys. Biophys. Chem.

1986, 15, 163-193.
23. Jayaram, B.; Sharp, Κ. Α.; Honig, B. Biopolymers 1989, 28, 975-993.
24. Sharp, Κ. Α.; Honig, B. Ann. Rev. Biophys. Biophys. Chem. 1990, 19, 301-

332.
25. Eisenberg, D.; McLachlan, A. D. Nature 1986, 319, 199-203.
26. Eisenberg, D.; Wesson, M.; Yamashita, M. Chem. Scripta 1989, 29A, 217-221.
27. Wesson, L.; Eisenberg, D. Protein Science 1992, 1, 227-235.
28. Schiffer, C. Α.; Caldwell, J. W.; Stroud, R. M.; Kollman, P. A. Protein Science

1992, 1, 396-400.
29. von Freyberg, B.; Richmand, T. J.; Braun, W. J. Molec. Biol. 1993, 233,

275-292.
30. Still, W. C.; Tempczyk, Α.; Hawley, R. C.; Hendrickson, T. J. Am. Chem.

Soc. 1990, 112, 6127-6129.
31. Stouten, P. F. W.; Frömmel, C.; Nakamura, H.; Sander, C. Molecular Simu

lation 1993, 10, 97-120.
32. Davis, M. E. J. Chem. Phys. 1994, 100, 5149-5159.
33. Gilson, M. K.; Rashin, Α.; Fine, R.; Honig, B. J. Molec. Biol. 1985, 183,

503-516.
34. Gilson, M. K.; Sharp, Κ. Α.; Honig, B. J. Comp. Chem. 1987, 9, 327-335.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 169

35. Rashin, A. A. Int. J. Quantum Chem.: Quantum Biol. Symp. 1988, 15,
103-118.

36. Zauhar, R. J.; Morgan, R. S. J. Molec. Biol. 1985, 186, 815-820.
37. Zauhar, R. J.; Morgan, R. S. J. Comp. Chem. 1988, 9, 171-187.
38. Zauhar, R. J.; Morgan, R. S. J. Comp. Chem. 1990, 11, 603-622.
39. Rashin, A. A. J. Phys. Chem. 1988, 94, 1725-1733.
40. Vorobjev, Y. N.; Grant, J. Α.; Scheraga, H. A. J. Am. Chem. Soc. 1992, 114,

3189-3196.
41. Conolly, M. L. J. Appl. Cryst. 1983, 16, 548-558.
42. Perrot, G.; Cheng, B.; Gibson, K. D.; Vila, J.; Palmer, Κ. Α.; Nayeem, Α.;

Maigret, Β.; Scheraga, Η. A. J. Comp. Chem. 1992, 13, 1-11.
43. Richmond, T. J. Molec. Biol 1984, 178, 63-89.
44. Gilson, M. K.; Honig, B. Journal of Computer-Aided Molecular Design 1991,

5, 5-20.
45. Zauhar, R. J. J. Comp. Chem. 1991, 12, 575-583.
46. Gilson, M. K.; Davis, M. E.; Luty, Β. Α.; McCammon, J. A. J. Phys. Chem.

1993, 97, 3591-3600.
RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 12

Parallelization of Poisson—Boltzmann
and Brownian Dynamics Calculations

Andrew Ilin1, Babak Bagheri1, L. Ridgway Scott1, James M. Briggs2,
and J. Andrew McCammon2

1Department of Mathematics and 2Department of Chemistry,
University of Houston, Houston, TX 77204

Poisson-Boltzmann calculations are increasingly used in chemistry and
biochemistry to determine the electrostatic free energy of solute molecules
in electrolyte solutions. The forces acting on such molecules can also be
calculated and used in Brownian dynamics simulations of diffusional mo
tion of the solutes. All of these calculations become computationally
intensive as the model systems are described in greater detail. Here we
describe recent advances in the parallelization of such calculations. Illus
trative results are presented for the enzyme acetylcholinesterase.

Electrostatic interactions play a key role in determining the stability of confor
mations and complexes of solute molecules in solution. Because these interactions
are long-ranged, they also play an important role in determining the rates of dif
fusional conformational change and of diffusional encounter of solute molecules.

The most accurate computational models of the systems listed above would
include an atomistic description of both the solvent and solute molecules of interest.
But such fully microscopic models, as employed for example in molecular dynamics
simulations, can not yet be used in studies of many processes of interest because
of current limitations in the performance and capacity of computers.

Fortunately, the solvent and secondary solute species such as spectator ions can
he replaced to a good approximation in many cases by continuum models, and the
continuum treatment can even be employed for the interiors of the solute species of
primary interest (1). For example, simulations hased on such models were recently
used successfully to guide the first quantitative engineering of a faster enzyme that
was then proven in the laboratory (2,3).

Simulations based on continuum-type models can still be very demanding of
computational resources, however. For example, it is not yet possible to use
the standard continuum method for calculating electrostatic forces (based on the

0097-6156/95/0592-0170$12.00A)
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AL. Poisson-Boltzmann and Brownian Dynamics Calculations 171

Poisson-Boltzmann equation, see below) to recompute these forces during a Brow
nian dynamics simulation of the encounter of a substrate with an enzyme molecule.
Instead, the substrate is typically treated as one or more test charges moving in the
fixed field of the isolated enzyme; this approximation ignores certain interactions,
such as those between the charges in the substrate and their image charges due to
the dielectric interface between the enzyme and the solvent.

In the present paper, we outline progress in the development of algorithms and
codes to speed continuum-type calculations on parallel computers. The computer
software used is the University of Houston Brownian Dynamics (UHBD) program (1)
and the computations are done on the Intel Delta machine. Here, we first describe
in some detail how the electrostatic calculations can be parallelized efficiently. We
then illustrate how the Brownian dynamics trajectory calculations can be paral
lelized, particularly by improvements in the generation of random numbers. We
then illustrate the use of such methods for a system of great biomedical importance,
the enzyme acetylcholinesterase.

Mathematical Model of Electrostatics

The Nonlinear Poisson-Boltzmann equation (NLPBE) can be used to calculate the
electrostatic potential field φ(τ) of a molecule (4,5). The N L P B E can be written
in the following dimensionless form for a univalent electrolyte solution:

- V · e(r)ν.φ + k(r) sinhφ = p(r) m Ω E R 3, (1)
φ(τ) = Φ0(Γ) on 9Ω,

where e(r) is the dielectric constant, p(r) is the charge density, k(r) is the dimen
sionless solvent ionic strength, r is a position, and φο(τ) is assumed to be known
on the boundary of the domain Ω. Typically e(r) and k(r) are piecewise constant
functions, p(r) is a sum of Dirac 6-type singular functions, hut φ(τ) and ε(τ)ν.φ(τ)
are continuous.

Numerical method

When k(r) has relatively small values, i.e. the N L P B E is not "too nonlinear" a
conjugate gradient method based on a variational formulation of the given nonlinear
problem can be used for solving Equation 1 (4).

The full nonlinear Poisson-Boltzmann equation with the given boundary con
ditions can be solved by a damped version of Newton's method:

Φ.η*α = Φ. + ωξ (2)

where the damping factor ω. € [0,2] and the correction ξ is the solution of the
linearized equation:

- V · e{r)V_£ + k{r) cosh<£(r)£ = p(r) + V · e(r)V#(r) - k{r) s inner) . (3)

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

172 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 1: Sparsity of A

The convergence criterion for Newton's method is

M\\<6*Ml

where \\ξ\\ is some norm of correction ξ and 6χ is a convergence tolerance.
Typical difference methods for the solution of equation 3 lead to the algebraic

system of equations
Ax = 6, (4)

where a: is a discretization of the correction potential ξ, h is a discretization of the
residual term in Equation 3 (ρ + V · eS/φ — fc(r)sinh<£), A is the sparse matrix
corresponding to an approximation of the linear differential operator —V · eV +
k(r) cosh φ.

In three dimensions and for the standard seven-point difference stencil, the
matrix A consists of the following diagonals (6)

A = Ε + C + Β + D + BT + CT + ET = L + D + LT. (5)

shown in Figure 1, where L is the lower triangular matrix with three diagonals.
Numerical experiments have shown that the Preconditioned Conjugate Gradi

ents (PCG) method, shown in Figure 2 (where M is the preconditioning matrix),
is preferable to other iterative techniques (6-8) for solving this system of equations.
We will consider diagonal and Incomplete Cholesky preconditioner M , having a
sparsity (nonzero) structure subordinate to that of A. We can exploit parallelism
in the following steps of one iteration of the P C G algorithm (which takes a total
of 35ΛΓ flops):

1. vector addition and multiplication by a constant (6N flops),

2. vector multiplication (r» · M~lr.i) and (p{ · Ap{) (4N flops),

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 173

ro = b — Ax
PQ = M~lrQ

For i = 0 to convergence
a = (n · A f V i) / ^ · Api)
®<+i = + «Ρ»

= f\ — aApj
/? = (r < + 1 · M-lri+l)l{n · M " 1 ^

End For

Figure 2: Preconditioned Conjugate Gradients

3. evaluation of Ap{ (13Ν flops),

4. solution of pi = M r * (12JV flops, if A was prescaled by the method which
we will describe later),

where Ν is the number of unknowns.
As we will see in the following sections, the effective introduction of parallelism

into last item is the most challenging aspect of parallelizing P C G . Parallelizing of
other items were studied in Ref. (9).

Para l le l preconditioning

M is a preconditioning matrix which should be easily invertible. The more closely
M resembles A , the fewer iterations will be required, but the more difficult will be
the problem of inverting M. A preconditioner which is easy to implement is the
diagonal M = D~l. Diagonal preconditioning will not, however, increase the rate
of convergence of the conjugate gradient method dramatically.

A more effective preconditioner is the Incomplete Cholesky (IC) factorization
of A (10,11):

M = (L + Δ)Δ-1{Δ + ΣΤ), (6)

where the lower triangular matrix L + Δ consists of four diagonals, shown in Figure
3.

The entries of the diagonal matrix Δ are given by

L2 2 2

Qijk — Uijk ς. ~ χ , V 1).
Oi-ljk °ij-l,k Q%j,k-1

where d,^, t̂-ij/fc» Ctj-i^j e%j,k-\ are entries of diagonal matrices D, B, C , E respec
tively. Since the preconditioning matrix is given as a product of two triangular fac
tors (Equation6), the preconditioning phase requires the solution of two triangular
systems.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

174 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Figure 3: Sparsity of the lower triangular matrix of IC preconditioner

(411) (321) (231) (141) (312)

/ I I I !
1-si node

Q2Q (132) (213) (123) (114)

/ I Î \
2-nd node ^

Figure 4: Graph of dependences of recurrence (8)

A straightforward way to parallelize triangular solves is to write the algorithm
as a recurrence and schedule the computation to take advantage of whatever par
allelism there is. For example, for the lower triangular factor, the recurrence has
the following form:

Pijk = Tyk - bijkPi-ijk ~ CijkPij-i,k - eijkPij,k-i- (8)

The level-scheduled, multicolor and hyperplane methods (12-17) use the graph of
dependences of the recurrence equation 8 (shown in Figure 4) to discover paral
lelism. For example, the level-scheduled method sorts the dependence graph topo-
logically and distributes the calculation of,each level among as many processors as
possible. These approaches have the following disadvantages:

• considerable amount of communication between processors,

• bad load balance,

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET A L Poisson-Boltzmann and Brownian Dynamics Calculations 175

• an order of computation different from the sequential algorithm.

A result of the first two disadvantages is that these methods are not scalable. Thus
solving a 2-D problem on 4 processors gave a speedup factor of only 2.1 (16).

The approach we present here is to avoid the complete solution of the triangular
systems. It is equivalent to introducing additional incompleteness into the IC
preconditioner so that the matrix Lp + Δ is block-diagonal (see Figure 5). Notice
that if the number of grid-points in the z-direction is a multiple of the number of
processors then the "parallelizable" matrix Lp differs from the original one in only
some part of the third subdiagonal.

The described parallel ICCG method (PICCG) has the following advantages:

• no communication between processors during the preconditioning phase,

• perfect load balance,

• no reordering of the computation.

The disadvantage of this method is the dependence of the convergence rate on the
number of processors. We note that the parallel algorithm is not equivalent to the
sequential algorithm.

Parallelization of the UHBD program for the Delta was performed using the
Pfortran compiler (18). Our approach to the parallelization of the electrostatic
phase is related to domain decomposition techniques. A l l domain data are dis
tributed among processors. This requires data exchange between processors for
evaluation of Ap. Also, vector multiplication requires global summation (reduc
tion) of local results computed by each processor. The parallel ICCG method
described above has also been used for the parallel mosfet simulation (19).

Figure 5: Sparsity of "parallelizable" IC preconditioner

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

176 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Scaling and Modification

To reduce the number of operations per iteration, we can scale A symmetrically
by

A! = A~l/2AA-l!\ (9)

so that the preconditioner M' of the scaled matrix A' has the identity matrix as
its diagonal A' = J". With this change the Equation 4 becomes

A'x1 = (10)

where x' = Al/2x,b' = A~1/2b.
To reduce the number of iterations, we can introduce a parameter a into the

preconditioner by modifying its diagonal as follows.

r , bi-ijkjbi-ijk + a(cj-ijk + e t-ijjQ)
Oijk = dijk 7

Q j - M f c t j - M + ^(frtj-u + e<j-itfc))

e>j,fc-i(eij,fc-i + a(&tj,fc-i 4- c%j,k-i))

The resulting matrix is known as the Modified Incomplete Cholesky (MIC) pre
conditioner (7,17). One should choose the value of α to minimize the number of
iterations. Numerical experiments show that a = 0.95 is often optimal for the
one processor case and corresponding M I C C G method converges two times faster
than with ICCG. For a large number of processors the optimal a gets smaller and
convergence of M I C C G and ICCG is about the same (9).

Eisenstat's implementation

It has been shown that a significant reduction in C P U time is obtained for the
symmetrically scaled (M)ICCG algorithm using Eisenstat's implementation (17).
Introduced below is a similar improvement to our parallel (M)ICCG.

Let matrix A = L + D + LT be symmetrically prescaled according to Equation
9 and M = (Lp + /)(/ + Lp) be the corresponding parallel preconditioner. The
idea of Eisenstat's implementation is to form the preconditioning matrix explicitly
rather than using the preconditioner for redefining of the inner products for 7\ as
in Figure 2.

Consider the following system:

A'x' = (12)

where A9 = {Lp + J) " 1 A(I + ΐζ), χ' = (I + ΐξ)χ, b' = (Lp -f I)-lb. One may
check that M~lA = P~lA'P with Ρ = I + Lp so A' and M~lA have the same
condition numbers. This means that the preconditioned conjugate gradient method
for Equation 4 has the same convergence rate as the pure conjugate gradient method
for the Equation 12.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 177

So we may omit the preconditioning phase and calculate A'p' using the following
formula:

A'p' = t' + (Lp +1)" — Lp + D — 21 + LT — LT

p)t' + p')> (13)

where f = (J + L^)~lp'. Note that if the number of processors ρ is 1, then the
computation of A'p1 costs 15ΛΓ flops. For ρ > 1 it costs 177V flops; SN flops for
one conjugate gradient iteration is saved since original ICCG iteration costs 25iV
flops.

Brownian Dynamics

In a typical application, the phase of UHBD which computes Brownian Dynamics
trajectories simulates the movement of a test particle toward the molecule being
studied. The BD algorithm uses the electrostatic potential to compute trajecto
ries of a diffusing test particle under the influence of a combination of random
and electrostatic forces. A detailed description of the implemented algorithm is
available (20).

The issues which make Brownian dynamics an interesting parallelization prob
lem are

• deciding how to store the electrostatic potential needed to compute forces,

• balancing the computational bad, and

• generating independent streams of random numbers.

Parallelization of Brownian dynamics is performed such that all trajectories are
distributed among processors. Since each trajectory may travel through the whole
domain, each processor should have access to electrostatic data in the entire do
main. This means that before Brownian dynamics is started, the program should
make the "local" electrostatic data "global". On the other hand, once the elec
trostatic simulation is over, the space which was occupied by working conjugate
gradient arrays (like the residual vector r. and others) can then be used for elec
trostatic potential storage. Limitations of memory on each processor dictated that
the maximum mesh size is equal 1003. This memory restriction may be removed if
some type of distributed-shared memory (21) or paging memory were available.

M a i n Steps of Brownian Dynamics Simulat ion

Consider the method of determining the diffusion-controlled rate constant for the
simple case of a symmetric two-particle system without electrostatic or hydrody-
namic interactions. The Ermak-McCammon equation for the Brownian dynamics
step of the particle reduces in this case to

r = r° + R + (kBT^DFir0)^ (14)

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

178 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

where r° is the relative position vector before a time step is taken, r is the relative
position vector after a time step, and R is the vector of Gaussian random numbers
of zero mean and variance

< RiRj > = 2D6ioAt, 2 = 1,2,3; j = 1,2,3. (15)

D is the relative diffusion constant, At is the time step, ks is Boltzmann's constant
and Τ is the temperature.

A set of trajectories is simulated starting on the b-surface (|r| = b) for b » d,
(d is the diameter of each particle). Trajectories are terminated in the case of
reaction (|r| < d) or in the case of particle escape (|r| > q,q » b). Several
hundred to several thousand trajectories are run to calculate a reaction probability
β

where Ν is the total number of trajectories and NT is the number of reactive
trajectories. The diffusion-controlled rate constant, reduced by the Smoulchowski
result, is

26/?

where the quantity Ω = b/q. For the simple two-particle case described above, the
theoretical value of kr is 1.0. Since a theoretical result is known, this is a convenient
test of the random number generator.

Random Number Generator

When Brownian-dynamic trajectories are calculated in parallel, the streams of ran
dom numbers that are generated (22,23) in parallel must have low correlation. If
they do not, then the work done in parallel may be in vain. Very similar trajecto
ries may have been calculated and hence resulting in little extra information. By
simply adding the logical number of each process (or processor) to the seed used for
random number generation, reasonably independent streams of random numbers
are produced. This can be proven by computing the correlation function for two
such streams explicitly.

Uniform random numbers can be used to generate a Gaussian random number.
Currently the generator of G. Marsaglia and A. Zaman (22) is used in UHBD. This
uniform random number generator is a combination of a Fibonacci sequence and
an arithmetic sequence.

The Box-Muller technique is currently used to generate the Gaussian random
numbers. For uniform random variables Ui and u2 on (0,1] one needs to calculate

gx = ^ - 2 1 n t t i ^ cos27nz2> 9.2 = ^ - 2 1 n i t i ^ sin27nz2. (18)

The numbers pi and 52 are normally distributed random numbers:

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AL. Poisson-Boltzmann and Brownian Dynamics Calculations 179

This method is easily implemented, but is computationally intensive.
Marsaglia's method for the generation of uniform random numbers has been

parallelized and used in UHBD. The main problem is in simplifying the Gaussian
transform. The objective is to use a linear transform to get random numbers with
approximately a Gaussian distribution (Equation 19). Equations 18 are not linear
because they contain sin, cos, log.

The distribution function fg(x) is normalized (f*™ f9{x)dx = 1). Let us divide
the domain (—oo, +oo) using set of points {0, ±X\, ± £ 2 > · · · ± xN/2-1} as dehmiters
such that

/ fg(x)dx= f9(x)dx= f,(x)dx=j:. (20)

If Ν is sufficiently large then fg(x) is approximately constant in each subdomain.
We use the following method to calculate x».

1 2
X0 = 0, X i _ 1 / 2 = + , Xi = Xi-i + η—— r, t = l , . . . N/2. (21)

The routine that calculates Xi is called only once during a BD simulation.
It is now necessary to approximate the Gaussian transform. Consider a uniform

random number u on (0,1], The number i = Int(iVu) - N/2 is an integer uniform
random number and can be used to determine the subdomain. The sign of i will
correspond to the sign of g. Then y = Nu — Int(Nu) will be a uniform random
variable on (0,1], not correlated with i. Finally the Gaussian random variable is

g = sign(i)(xi + (xi+1 - xjy). (22)

This transform can be made as accurate as desired by choosing an arbitrarily large
number TV, without significant influence on computational time.

With the above optimization the random number generator became more than
20 times faster without any loss in accuracy.

Parallel Performance

The experiments were carried out on the Intel Delta with 16MB of memory on
each node. The initial experiment was a test case for which an analytic solution
is known: a single-atom target molecule with 1003 grid size. A l l C P U times were
computed using the dclockQ system routine on the Intel system.

Figure 6 provides the total C P U time for P ICCG and BD calculations with
5000 trajectories as a function of the number of processors P. It is clear that vec
tor multiplication time, matrix action time and preconditioning time are almost
scalable. Reduction time, which measures global summation for vector multiplica
tion, increases proportionally to log(P), but is still much smaller than other terms.
A n algorithm can be used whose cost does not increase with with Ρ (24). For large
P, this will yield slightly improved overall performance.

The most negative effect of the parallelization on distributed memory architec
ture, is data exchange time. This term is proportional to the number of neighbor
processors which need to be involved to exchange, which is equal Int(P/n) + 1,

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

180 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Delta: UHBD single atom simulation (5000 trajectories on 100*3 Grid), ICCG
10 t i

1 0 - ' l , , . I
ίο1 102 103 104

Number of Processors

Figure 6: Total C P U time for P ICCG and BD calculation with 5000 trajectories
and a single-atom target molecule on a 1003 grid as a function of the number of
processors on Delta

where the mesh size s Ν = η 3 . The last term dominates over others when Ρ > n.
For large P , a more complex decomposition should be used (the data presented
here are based on strip decompositions) (24). This will have a substantial effect on
the overall performance for large P.

Figure 7 demonstrates the advantage of our parallel ICCG solver for the elec
trostatic potential over the simpler diagonal prescaled preconditioned conjugate
gradient method (DCG). Since PICCG converges twice as fast as D C G the first
one is preferable.

The Figure 7 also demonstrates that increasing the number of processors ini
tially slows down the convergence of the parallel ICCG. The reason is that the
original (single processor) IC preconditioner (Figure 3) is closer to A~l than the
parallel IC preconditioner (Figure 5). The most surprising result which can be
seen in Figure 7 is that convergence improves for both D C G and P ICCG for large
numbers of processors. This improvement can be explained by the fact that for
large numbers of processors, each processor performs local sumations on smaller
sets of floating point numbers and hence accumulates smaller round-off errors.

Figure 8 shows the difference of minimum and maximum C P U time for the
electrostatic and Brownian dynamics computations. We see that the Brownian
dynamic phase is more poorly load balanced than the electrostatic phase. The
reason is that different trajectories have different lengths. When the total number
of trajectories is small, different processors spend widely varying amounts of time
doing BD (i.e. bad load balance). Parallel Brownian dynamics is most efficient
when the number of trajectories is much larger than the number of processors so
that all processors do approximately the same amount of work.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AK Poisson—Boltzmann and Brownian Dynamics Calculations 181

Comparison of LPBE Solvers on 100x100x100 Grid on Delta

Number of Processors

Figure 7: Total number of iterations for P I C C G and D C G for a single-atom
molecule on a 1003 grid as a function of the number of processors on Delta

D̂ rta: UHBD single atom simulation (5000 trajectories on 100*3 Grid), ICCG

ο
I

1 ,

" -o Min. Solver

10 10
Number of Processors

Figure 8: Total C P U time (including maximal and minimal time) for P I C C G and
B D calculation with 5000 trajectories and a single-atom target molecule on a 1003

grid as a function of the number of processors on Delta

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

182 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Sample Applications

The second experiment was for a case of biomedical interest and involved an enzyme
thought to be involved in Alzheimer's disease, as well as the target for biological
nerve agents. The enzyme studied was Acetylcholinesterase (AChE), from the
electric fish (Torpedo californica). This enzyme is found in cholinergic synapses
and catalyzes the hydrolysis of the neurotransmitter acetylcholine (ACh) into the
acetate ion and choline. This process represents the termination of nerve signal
transduction. The main feature of choline is the presence of a positively charged
functional group (a quarternary ammonium ion). AChE has been shown to operate
near the diffusion controlled limit so Brownian dynamics simulations of the sub
strate, ACh, approaching the enzyme should reveal any salient features of the effect
of the electrostatic environment around the enzyme on diffusion of the substrate.

The X-ray structure for AChE is known and has been shown to be a homod-
imer which contains two active sites, one per identical monomer (25). The entire
system consists of 10,416 atoms which includes hydrogens on the heteroatoms. The
protonation states of the ionizable residues in AChE were determined with a pro
cedure developed for UHBD in which each ionization state is computed based on the
electrostatic environment for that particular amino acid residue in its position in
the enzyme.

The electrostatic potential due to the enzyme in a dielectric continuum of water
(ε = 80) is presented in Figure 9. A grid size of 65 3 and a grid spacing of 2.8
A were required in order for the grid map to be compatible with the version of
the display program that we used (GRASP (26)). The electrostatics part of the
calculation used about 9 cpu seconds and needed 90 iterations while using 16 nodes.
The entrances to the two active sites are clearly identifiable by the solid black
electrostatic potential surfaces for each monomer at -2.5 kcal/mol-e. Note that the
active sites are oriented in opposite directions so as not to directly compete for the
substrate. Electrostatic potential contour lines are shown at -2.0, -1.25, and -0.75
kcal/mol-e to highlight the fact that the potential extends far from the active sites
and effectively steers the positively charged ACh substrates to the active sites.

A sample Brownian dynamics trajectory is shown in Figure 10. In a typical
Brownian dynamics experiment, many such trajectories are run and checked to see
whether they satisfy the specified conditions for reaction. In the present simulation,
the diffusing particle (ACh) is treated as a single sphere with a unit positive charge
and a hydrodynamic radius of 5 Ά. The time step in the region near the enzyme
is 0.02 ps; this trajectory represents 4000 ps. Note that the diffusing substrate
spends most of its time under the influence of the negative region of the electrostatic
potential of the enzyme active site.

Conclusions

The determination of electrostatic free energy can be accomplished efficiently on
distributed memory computers. Supercomputer-level performance is obtained on
only modest numbers of processors, and techniques have been identified to allow
the use of hundreds of processors efficiently. The most severe constraint in using

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

12. ILIN ET AL. Poisson-Boltzmann and Brownian Dynamics Calculations 183

Figure 9: Electrostatic potential surface (solid black) around A C h E and con
toured at -2.5 kcal/mol-e. Electrostatic potential contour slices are shown for
energy levels -2.0, -1.25 and -0.75 kcal/mol-e. Note that this is a homodimer
with two counteropposed active sites. These data were generated with the
UHBD program. The figure was generated with the GRASP software (26).

Figure 10: A sample trajectory from a Brownian dynamics run of a single
sphere with a unit positive charge diffusing up to one of the active sites in
AChE. The trajectory starts to the lower left of the enzyme dimer and diffuses
up and into the negative electrostatic field of one of the active sites. The data
were generated with the UHBD program and the figure was generated with the
QUANTA software (Molecular Simulations, Inc. , Burlington, M A 01803-5297)

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

184 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

distributed memory computers for such calculations is the storage required for the
electrostatic potential during the Brownian dynamics phase. Efficient support for
distributed shared memory would remove this constraint.

Acknowledgments

This work was supported in part by grants from NIH, the Robert A . Welch Founda
tion, the NSF and A R P A , C R P C , and the NSF Supercomputer Centers Metacenter
Program.

Literature Cited

(1) Madura, J. D.; Davis, M. E.; Gilson, M. K.; Wade, R. C.; Luty, Β. Α.; Mc-
Cammon, J. A. Rev. Comp. Chem. 1994, 5, 229-267.

(2) Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.;
Banci, L.; Hallewell, R. A. Nature 1992, 358, 347-350.

(3) McCammon, J. A. Current Biology 1992, 2, 585-586.
(4) Luty, Β. Α.; Davis, M. E.; McCammon, J. A. J. Comp. Chem. 1992, 13,

1114-1118.
(5) Holst, M.; Kozack, R. E.; Saied, F.; Subramaniam, S. Multigrid Solution of

the Poisson-Boltzmann Equation. Submitted for publication, 1994.
(6) Davis, M. E.; McCammon, J. A. J. Comp. Chem. 1989, 10, 386-391.
(7) Holst, M.; Saied, F. J. Comp. Chem. 1993, 14, 105-113.
(8) Il'in, V. P. Iterative Incomplete Factorization Methods. World Scientific: Sin

gapore, 1992.
(9) Bagheri, B.; Ilin, Α.; Scott, L. R. Parallelizing UHBD. Research Report

UH/MD 167, Dept. Math., Univ. Houston, 1993. available apon request by
e-mail to scott@uh.edu.

(10) Meijerink, J. Α.; van der Vorst, H. A. Mathematics of Computation 1977, 31,
148-162.

(11) Meijerink, J. Α.; van der Vorst, H. A. J. Comp. Phys. 1981, 44, 134-155.
(12) Berryman, H.; Saltz, J.; Gropp, W.; Mirchandaney, R. J. of Parallel and

Distributed Computing 1990, 8, 186-190.
(13) Foresti, S.; Hassanzadeh, S.; Murakami, H.; Sonnad, V. Parallel Computing

1993, 19, 1-8.
(14) Hammond, S. W.; Schreiber, R. International Journal of High Speed Com

puting 1992, 4, 1-21.
(15) Ortega, J. M. Itroduction to Parallel and Vector Solution of Linear Systems.

Plenum Press: New York, 1988.
(16) Rothberg, E.; Gupta, A. Parallel Computing 1992, 18, 719-741.

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

mailto:scott@uh.edu

12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 185

(17) van der Vorst, H. A. Comp. Phys. Commun. 1989, 53, 223 - 235.
(18) Bagheri, B.; Clark, T. W.; Scott, L. R. Fortran Forum 1992, 11, 20-31.
(19) Bagheri, B.; Ilin, Α.; Scott, L. R. Parallel 3-D MOSFET Simulation. In

Proceedings of the 27th Annual Hawaii International Conference on System
Sciences, volume 1, pp. 46-54, Maui, HI, 1994.

(20) Bagheri, B.; Ilin, Α.; Scott, L. R. A Comparison of Distributed and Shared
Memory Scalable Architectures. 1. KSR Shared Memory. In Proceedings of the
Scalable High Performance Computing Conference, pp. 9-16, Knoxville, TN,
1994.

(21) Almasi, G. S.; Gottlieb, A. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company Inc.: Redwood City, CA, 1994.

(22) Marsaglia, G.; Zaman, Α.; Tsang, W. W. Statistics and Probability Letters
1990, 8, 35-39.

(23) James, F. Comp. Phys. Commun. 1990, 60, 329-344.
(24) Fox, G. Solving Problems on Concurrent Processors, volume 1. Prentice Hall:

Englewood Cliffs, 1988.
(25) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, Α.; Toker, L.;

Silman, I. Science 1991, 253, 872.
(26) Nicholls, Α.; Honig, B. GRASP. Columbia University: New York, v. 1.10.
RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 Y

O
R

K
 U

N
IV

 o
n

Ju
ne

 2
8,

 2
01

2
| h

ttp
://

pu
bs

.a
cs

.o
rg

 P

ub
lic

at
io

n
D

at
e:

 M
ay

 1
7,

 1
99

5
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 13

Classical and Quantum Molecular Dynamics
Simulation on Distributed-Memory Massively

Parallel Computers

Zhiming Li 1 , R. Benny Gerber1,2, and Craig C. Martens1

1Department of Chemistry and Irvine Research Unit in Advanced
Computing, University of California, Irvine, CA 92717-2025

2Department of Physical Chemistry and the Fritz Haber Center
for Molecular Dynamics, Hebrew University of Jerusalem,

Jerusalem 91904, Israel

The implementations of classical and quantum molecular dynamics
simulations on distributed-memory massively parallel computers are
presented. First, we discuss the implementation of large-scale
classical molecular dynamics (MD) simulations on SIMD
architecture parallel computers, and in particular, on the family of
MasPar distributed-memory data parallel computers. We describe
methods of mapping the problem onto the Processing Elements
(PE's) of the SIMD architecture, and assess the performance of each
strategy. The detailed implementations of this data parallel construct
are illustrated for two case studies: classical MD simulation of a two
-dimensional lattice and the photodissociation mechanisms of a
diatomic iodine impurity in a three-dimensional argon lattice. We
also present a study of quantum dynamics using the Time-Dependent
Self-Consistent Field (TDSCF) method. These calculations
demonstrate the potential of using massively parallel computers in
MD simulations of thermodynamic properties and chemical reaction
dynamics in condensed phases.

Molecular dynamics (MD) simulation using digital computers has proved to be a
useful tool for studying the properties of liquids, solid, polymers, and other
condensed phase systems (1-4). In the past decade, the growing availability of fast
vector and parallel supercomputers has made it possible to apply M D to
increasingly more realistic and challenging problems in the Fields of chemistry,
biology, physics and material science (5-8). With the advent of high performance
parallel computers (9-11), we face the challenge of developing new methods that
make optimal use of these computational resources. In this report, we will examine
the practicalities of parallelizing the basic M D algorithms on distributed-memory
single instruction-multiple data (SIMD) machines, using the high performance data
parallel programming language Fortran 90. The particular hardware used belongs
to the MasPar family of massively parallel computers.

The potential for parallelism in many scientific applications, including
molecular dynamics simulation, is primarily due to data parallelism. Here, the same
operation is applied simultaneously to all elements of a large data structure.

0097-6156/95A)592-0186$12.00A)
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 187

Exploiting data parallelism on distributed memory SIMD machines requires careful
partitioning of the data structure and computational tasks in order to benefit from
the architecture. In this paper, we describe the parallelization of the M D force
evaluation routine for many particles interacting by pairwise forces. For a system
containing on the order of 1000 particles undergoing mutual pairwise interactions,
our results indicate that a SIMD computer system can be a very efficient
computational platform for M D simulations. The need for modification of the
algorithms to achieve optimal performance and scalability for very large systems is
also discussed.

The remainder of this paper is organized as follows. First we briefly describe
the machine characteristics of the MasPar MP-2 massively parallel computer. Then
we review the classical and quantum molecular dynamics methods. The detailed
implementation of each algorithm on the MP-2 and the C P U performance results
are described and followed by a discussion of the results and future work.

The MasPar MP-2 Massively Parallel Computer System

Hardware Overview. The MasPar Computer Corporation MP-2 is a fine-grain
massively parallel computer. It uses a single instruction-multiple data (SIMD)
architecture. Here, each processor element executes the same instruction,
broadcasted by a processor array control unit (ACU), simultaneously, on its unique
set of data. The MP-2 has from 1024 to 16,384 32-bit processing elements (PE's).
Each PE contains a 32-bit A L U and floating point (FP) hardware to support IEEE
32- and 64-bit arithmetic, and has a local memory of either 16 or 64 Kbytes.
Aggregate double precision peak floating point performance for a 4K processor
machine is 600 Mflops.

The interconnection scheme for the processing elements in the MP-2 consists
of a two-dimensional mesh with toroidal wraparound. There are two distinct types
of communication patterns supported by the hardware. Local grid-based patterns
are supported through direct use of a two-dimensional torus grid with 8-way
nearest-neighbor communication (X-Net), while general patterns are supported
through the global router, which implements arbitrary point-to-point
communication. The general purpose network provides a bandwidth in excess of 1
Gigabyte/sec, while the X-Net provides an aggregate bandwidth exceeding 20
Gigabytes/sec in a 16K processor system.

The MasPar MP-2 is controlled by a serial front-end DECstation 5000 model
240. Application programs are compiled, debugged, and executed on the front-end
computer, passing MP-2 instructions to the A C U as appropriate. To facilitate the
storage of large amounts of data for data-intensive applications, the MP-2 is also
equipped with a disk array system, which is NFS mountable and has 11 Gbytes
capacity of formatted data with a sustained 12 MB/sec data transfer rate.

Programming Model and Environment Overview. The programming model for
the MasPar massively parallel computer is data parallel computing, which means
that the same operations are performed on many data elements simultaneously.
Each data element is associated with a single processor. Applications are not
restricted, however, to data sets matching exactly the physical size of the machine.
In general, data parallel applications often require many more individual processors
than are physically available on a given machine. The MasPar system provides for
this through its virtual-processor mechanism, supported at the MPFortran (MPF)
(12) level, and is transparent to the programmer. MPF is based on the Fortran 90
ISO standard (13). If die number of processors required by an application exceeds
the number of available physical processors, the local memory of each processor is
split into as many layers as necessary, with the processor automatically time-sliced

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

188 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

among layers. If V is the number of virtual processors and Ρ is the number of
physical processors, each physical processor would support V/P virtual processors.
The ratio V/P is called the virtual-processor, or VP, ratio (14,15). The concept of
parallel virtuality is achieved by using both optimizing compiler technology and
architecture design, in contrast with the Thinking Machine CM-2 implementation
(16) , which depends only on architecture design. MPF, the MasPar implementation
of Fortran 90, allows the user to easily handle very large data sets. With MPF, the
MP-2 massively parallel architecture is completely transparent. While working with
a single application program, the MPF optimizing compiler automatically separates
scalar and parallel code, assesses the MP-2's different functional units as needed,
and integrates all communications and I/O operations.

Another very useful tool is the MasPar Programming Environment (MPPE)
(17) , which provides an integrated graphical interface environment for developing
application programs.

MasPar Math and Data Display Library. The M P M L (MasPar Mathematics
Library) (18) consists of a set of routines for the implementation of data parallel
mathematical operations. It contains three primary groups of routines: solvers,
linear algebra build blocks, and fast Fourier transforms (FFTs). The solvers include
a dense matrix solver, a Cholesky solver, out-of-core solvers, and conjugate
gradient solvers. The linear algebra building block routines include versions that
operate on blocks of memory layers, ;c-oriented vectors, y-oriented vectors, and
matrices. The FFT routines include both real and complex versions in most cases.
The eigensolvers are under development, and are expected to be released with the
new version of system software.

Theoretical Background of the Molecular Dynamics Method.

Classical Molecular Dynamics Simulation. Classical molecular dynamics
simulations are based on a numerical solution of Hamilton's equations of motion
(19):

ËL
dt

dt
= - V ? H = Ft. i=7,... (1)

where H is the system Hamiltonian, which describe the time evolution of the
Cartesian coordinates rt and momenta p, for a collection of Ν particles with
masses m/ e The computationally most intensive step in an M D simulation is the
evaluation of the forces:

F , . = - V , V , i=7,...,JV (2)

which are the gradients of the potential functionVfa,~,rN) describing all the
interactions present in the system. The interaction potential may be further divided
into bonded and nonbonded interactions, and is usually modeled by analytical
functions (3), although ab initio molecular dynamics methods have been introduced
(20). Although the interaction potential functions are evaluated analytically, their

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 189

computational effort nevertheless consumes more than 90% of the computer time
(3). The fact that most of the computation in an M D simulation is concentrated in
the evaluation of the force makes it attractive to consider implementing the M D
code on a parallel computer architecture. For the case of simple pairwise additive
potential evaluations on conventional serial or vector machines, a Fortran code for
evaluating the forces requires a loop over the N(N-1)I2 distinct pairs of the Ν atoms.
The cost of evaluating the forces and potential energy of an N-atom system when all
interactions are considered thus scales as N2, which causes a severe obstacle to the
simulation of very large systems.

Trajectory Propagation by the Velocity Verlet Algorithm. To integrate the
equations of motion we adopted the velocity Verlet algorithm (3). This method is
based on a direct solution of the second-order Newton's equations corresponding to
the pair of first-order Hamilton's equations of Eq. (1):

d2f. -

^ = F. i = l,...,N (3)

The equations for advancing the position can be written as follows (3):

r,(f + At) = F,(0 + AtpM I m.t + (1 / 2)A/ 2F f(i) I m, i = 1,· · -9N
(4)

r,(f - At) = Γ,(0 - Atp.it) I m.t + (1 / 2)Δί2^(0 / mf ι = 1,-

where the momenta /?,(f) are evaluated from the following formula:

ftM-^^^-^^l / = (5)
2At

A detailed analysis of the stability of this algorithm can be found in Ref. (3). The
advantage of using the Verlet algorithm instead of more sophisticated integration
algorithms is its simplicity. In addition, the Verlet algorithm calls the force
evaluating routine only once for each time step advanced. Gear and other predictor-
corrector based integration algorithms need to call the force routine twice for each
integration cycle.

Quantum Molecular Dynamics Simulation. An exact quantum dynamics study is
based on solving the time-dependent Schrodinger equation (21):

a % r v i , ; 0 4 y (f t > „ A ; t) [(6)

where Η is the Hamiltonian operator:

^ ft2 c

The (ft/'-vifo) are a set of vibrational coordinates and (m^-",?/^) are the masses
of the particles comprising the system. Solution of this exact problem numerically

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

http://Atp.it

190 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

is currently intractable for more than 4 particles, and approximations must be used
to study the quantum dynamics of many-body systems. The approximate approach
we employ is the quantum Time-Dependent Self-Consistent Field (TDSCF) method
(22,23).

We now illustrate the TDSCF approach by considering a collinear model
system of anharmonic oscillators. The method is based on treating each vibrational
mode of the system by a single mode wave function affected by the average
interaction with other modes (22,23). The validity of the TDSCF approximation
has been discussed previously (24). Using the TDSCF ansatz, the total wave
function of the system is written as a product of single mode wave functions (22):

^(qlf-,q.;t)sf[^qi;t) (8)
t=l

where 0, (*/,;£) is the one degree of freedom wave function which describes the ith

vibrational mode. The TDSCF equations of motion can be written in the following
form (22):

dt
Kct(qk;t)<pk(qk;t) (h*l....Jt) (9)

where

and
2mk dql

\i*k !

(10)

(11)

are the single mode TDSCF potential energy functions. Note that Vk(qk;t)
depends on qk explicitly, and also on the dynamics of the other modes implicitly,
through the states 0<(^;Ο with ΧΦ k in Eq. (11). Solution of the above equations is
carried out simultaneously and self-consistently for all the vibrational modes. Thus
a multi-dimensional wave function is reduced to a product of one-dimensional wave
functions.

Wave Packet Propagation by the G r i d Method. The wave packet
propagation procedure used is adapted from several existing grid methods (25-28).
The single mode wave function is discretized, meaning that they are represented by
their values at a set of one dimensional grid points. The grid used here is a one-
dimensional lattice in the coordinates q and the domain are chosen to span the
dynamically relevant range of coordinate space. To calculate the time evolution of
the wave function, it is necessary to evaluate the SCF Hamiltonian operator

Λ?σψ«·(?,·;*)» which can be decomposed into potential energy and kinetic energy
operators. The action of potential operator V on ψ is local, and its effect on the
wave function is simply multiplication at each of the discrete grid points. The
operation of the kinetic operator Τφ^{;ΐ) is evaluated by the Fourier method
(23,25-28). The method involves two fast Fourier transforms. First φ^ι',ϊ) is

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 191

Fourier transformed to φ^Ρι',ί) in momentum space, then multiplied by
-h2pf 12m{ and the products are inverse Fourier transformed back to the
coordinate space.

Time propagation is accomplished by the second order differencing (SOD)
scheme (23). The SOD scheme can be expressed as:

ψ(ί + At) = ψ(ΐ - At) - 2ιΗψ(ί), (12)

where the operation of the Hamiltonian on a wave packet is evaluated by the FFT
method as discussed above. For a reasonably small time step, this procedure
preserves both the norm of ψ and its energy. The detailed stability analysis of this
wave packet propagation scheme was given in Ref. (25).

In summary, the TDSCF algorithm involves propagation of the single mode
wave functions for all the TDSCF modes using the SOD scheme under the mean
field potential function as defined in the equation (11). After each time step, the
mean field potential functions are updated using the new set of single mode wave
functions. This procedure is continued until a desired number of time steps is
reached. The time-consuming part of a TDSCF code includes two routines: (i) the
evaluation of the effect of the Hamiltonian on the wave function and (ii) the
evaluation of mean field potential functions. If the grid size is M and the number of
modes is n, for a serial computer these two steps scale as η In M and Mn9

respectively.

Data Parallel Implementations of Molecular Dynamics Simulation

The successful implementation of classical M D and quantum TDSCF methods on
SIMD computers involves a number of steps. First, variables must be allocated to
either the front end or to the DPU (data parallel units). As a rule, large arrays are
usually stored on the DPU and all others on the front end. To save communication
costs, certain 1-D arrays are converted into 2-D arrays using the SPREAD
construct. Second, the program must be designed to minimize data flow between
the front end and the DPU. Finally, Fortran 90 array constructs, such as S U M and
PRODUCT and machine-dependent routines, such as the MasPar fast Fourier
transform routines, should be employed where possible to increase the efficiency of
operations on the data.

Classical Molecular Dynamics Simulation. To overcome the unfavorable scaling
of computational cost with particle number associated with serial computers, several
parallel implementations of M D have been developed. We now describe two
alternative decomposition strategies which we have used in our studies: mapping of
each atom onto each virtual PE, and mapping each interaction (i.e., unique pair of
atoms) onto each virtual PE. In this paper, we have implemented these strategies
using MPFs data parallel constructs, which are data parallel extensions of standard
Fortran (12).

Mapping each atom onto each virtual PE. There are several applications
that suit the MasPar MP-2 architecture very well. These systems include two-
dimensional (2D) lattice systems, which can be used to represent surface
phenomena, 2D Ising models (29) and 2D Cellular Automata (30-33). For general
2D lattices, the Fortran 90 array construct CSHIFT, (which uses X-Net
communication) provides a very fast means of evaluating the forces and potential
functions. Using the CSHIFT construct, the distance between nearest atoms along
the χ Cartesian direction can be written as

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

192 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

dx = CSHIFT(rx,dim=l,shift=l) - rx, (13)

where rx is the array of χ positions of each atom. The same equation also applies to
the calculation of the separations of nearest-neighbor atoms in y Cartesian direction.
For long-range interaction beyond the nearest-neighbor atoms, equation (13) can be
generalized as:

where m is number of lattice spacing needed to be included in the interaction
potential functions. The force between atoms depends on the corresponding dx and
dy. The total potential energy can then be obtained by the MPF construct SUM, for
which computational cost scales as logN, as compared to Ν in the sequential
construct, where Ν is the number of elements to be summed.

Mapping each pair of interactions onto each virtual PE. The mapping
scheme presented above is suitable for simulations of lattice systems—that is,
systems with static and permanent particle positions. For an arbitrary N-body
system with simple 2-body interactions, we use a different mapping scheme. Here,
we map each pair of interactions onto each virtual processor element. We have
implemented this mapping scheme in our M D simulation code using an MPF data
parallel construct. This approach has been used previously on other SIMD systems.
It was first carried out on the DAP (ICL Distributed Array Processor) (34) and later
implemented on the Thinking Machine CM-2 (35). We will follow their notation
while presenting the details of our implementation.

The MPF data parallel construct SPREAD provides the capacity of mapping
the pair distance calculation over all pairs into "scalar-like" vector and matrix
computation. For example, to calculate the jc-component of the separation between
all pairs of atoms, we use

dx = SPREAD(jc,dim=l,copies=AO - SPREAD(x,dim=2,copies=A0 (15)

where dx is a 2D array of size NxN, Ν is the number of atoms, and χ is a vector of
length Ν consisting of the ^-component of atomic Cartesian coordinates. The
MPF's SPREAD function broadcasts the specified element (x) into the array dx
along a specific axis. Thus, the operation shown in equation (15) constructs the
matrix of Χχ-xj values. Similar constructs are needed for the other Cartesian
directions, and the matrix of interatomic separations r is then obtained by

which also represents the element-by-element operations implied by the MPF array
extension. Potential energy and interatomic forces are evaluated as their full NxN
matrix values and then they are summed to yield vector forces and scalar potential
energy using the SUM function within MPF.

Quantum Molecular Dynamics Simulation. The TDSCF algorithm combined
with the discretized representation of the single mode wave functions is an ideal
system for the SIMD massively parallel computer architectures. Here we present
the detailed implementation. The essence of the approach is to map each grid point
of the wave function to each virtual PE. We discretize the single mode wave
function on a one dimensional lattice of M grid points, and assume the system

dx = CSHIFT(rx,dim=l,shift=m) - rx, (14)

r = OSQKT(dx*dx+dy*dy+dz*dz\ (16)

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 193

consists of η TDSCF modes. Thus, the total wave function of the system can be
represented as a two-dimensional array of rank Mxn. That is:

W'j) ί) = ί Δ ί / i = l ,—,Μ, j = l ,—,η , (17)

where Aq is the grid spacing, M and η are the number of grid point and the number
of TDSCF modes, respectively. A similar decomposition scheme has been used in
quantum scattering calculations (36).

One of the most time-consuming parts of the TDSCF approach is the
evaluation of the mean-field potential given in Eq. (11). This involves numerically
evaluating the potential integral over the η-dimensional configuration space of the
system. For our model system, such integrals reduce to a function of one
dimensional integrals, which are approximated by the trapezoidal rule (37).

Timings and Performance Measurements

Newton's equations of motion were integrated numerically using the velocity Verlet
algorithm (3). The following CPU benchmark measurements are for 400 cycles of
integration.

Anharmonic 2D Lattice Model System. The MP-2204 is a 4096 processor
massively parallel computer. The processors are arranged on a 64x64 mesh, which
provides fast nearest-neighbor communication. The machine works well for
explicit algorithms that take advantage of this architecture. As we mentioned
above, a 2D lattice system fits this architecture very well. In our model
calculations, we use a 2D Morse lattice. The Morse potential has the following
form:

V (R) = De[\ - exp(- /} (/? - /U] 2 , (18)

where R is interatomic distance, and De, β and Re are potential parameters. For
distances greater than a cutoff R > Rc, we set the potential to zero; the potential
outside of this radius does not need to be evaluated. In our performance studies, we
vary Rc to determine scaling of computational effort with cutoff radius. The
detailed implementation involves using the MPF construct CSHIFT, which uses fast
X-Net communications.

The computational time needed per time step of the molecular dynamics
simulation on this system is approximately given by:

CPU = AN + BNM2 (19)

Here, A is the computing time needed per molecule in the Verlet propagating step
and Β is the time needed per X-Net communication for each pair of particles. M is
the number of lattice spacings included in the force evaluation, which depends in
turn on Rc. For system with the nearest-neighbor interactions M = 1, second
nearest-neighbor M = 2, etc.

The scaling of computer time with problem size and number of PE's are
important performance indicators for massively parallel computers. Here, the
scalability of the M D code is tested with respect to both the number of processor
elements (PE's) and the number of atoms. For the 2D lattice system, the CPU
performance of the parallel program versus the number of atoms is shown in Figure
1. The calculation was done on the MP-2204. A linear dependence on the number

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

194 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

of atoms is observed. The peak CPU performance for MP-2204 is 600 Mflops for
double precision floating point algorithms. The parallel version of this program
running on the MP-2204 can reach a speed of 300 Mflops, which is three times
faster than a single processor of the Cray Y - M P . In this particular application, we
have achieved 50% of the MP-2's peak performance.

M depends linearly on RCy and from Eq. (15), we can see that the computational
time is proportional to the square of the interaction cut-off radii of the potential
function. This expected behavior is in fact observed, as indicated in Figure 2.

Photodissociation Dynamics of 12 in Rare Gas Solids. The system considered in
this study consists of a single I2 molecule embedded in a double substitutional site
of a face-centered cubic Ar lattice, consisting of a cube of 512 atoms with periodic
boundary condition. The interaction potential function for the system is given by:

V = Vh+VAr + Vh.Ar, (20)

where the individual terms correspond to the I-I interaction potential, the Ar-Ar
interaction potential, and the interaction potential between the 12 and the Ar atoms,
respectively. For ground state 12, we use a Morse potential to model the I-I
interaction:

Vh (Λ) = De[\- exp(-/J(* - Re)]2, (21)

where De is the dissociation energy of ground (X) electronic state, β is the
potential range parameter, and Re is the equilibrium distance of l2-
Photodissociation is modeled in this system by an instantaneous transition from the
X ground state to the C repulsive excited electronic state. The 12 excited state
potential function is given by:

V / a (/0 = Aexp(-aK), (22)

where R is the instantaneous I-I distance and the parameters A and a are obtained
by fitting spectroscopic data (38). The nonbonded Ar-Ar and Ar-I interactions are
modeled by pairwise Lennard-Jones potentials, given by:

V(r) = 4£\ (fHf (23)

The potential parameters are given in Table 1. The photodissociation dynamics of I2
in solid Ar were treated using classical mechanics (39,40). To prepare the initial
conditions for the photodissociation, the system was initially equilibrated at 15 Κ
with I2 in its ground electronic state. The positions and velocities of each atoms
were written out to a file every 50 fs. The configurations and velocities were read
in from this file as the initial conditions for ensemble of trajectories. The
photodissociation process was then simulated by suddenly switching the 12 potential
from its ground state Morse form to the exponential form of the excited repulsive
potential surface.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

LI ET AL. Classical and Quantum Molecular Dynamics Simulation

1600

1400 h

0 50 100 150 200 250 300

Number of atoms (Thousand)

Figure 1. CPU benchmark performance for the two dimension lattice with
nearest-neighbor interaction on MP-2(2204). The plot shows the CPU
time versus number of atoms. Note that all the timing results are for the
CPU time of integrating 400 cycles using the velocity Verlet algorithm.

Cut-off Radii (Lattice Constant)

Figure 2. Data Parallel Unit (DPU) computational time as a function of
interaction cut-off radii for the simulation of 2d lattices with 4096 (64x64)
particles.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

196 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

1000
/-—\

10
1 2 4 8 16
Number of PE's (1024)

Figure 3. CPU time of benchmark calculation for the parallel program
versus the number of processor elements used on MP-1 for system with
512 atoms.

140

120 -
C ο ο 100 -

(s
e

(s
e

80 -

ε 60 -

40 -

υ 20 -

0
0 200 400 600 800 1000 1200

Number of Atoms

Figure 4. CPU performance for the parallel program versus the number of
atoms on MP-2204 for an N-body system.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET A L Classical and Quantum Molecular Dynamics Simulation 197

Table 1. Potential parameters.

Potential Parameters Values

De 15,370 cm" 1

re
2.55 À

β 1.77 À" 1

A 5,10 x l O 7 cm" 1

a 3.29 A " 1

£Ar-Ar 83.26 cm" 1

0~Ar-Ar 3.405 Â

εΐ-Ατ 130.24 c m ' 1

σΐ-Ar 3.617 Â

To obtain optimal performance on a SIMD massively parallel computer, we
need to keep the operations performed on the data as regular as possible. This is not
a problem for a homogeneous system like pure Ar. For an atomic system with a
molecular impurity, such as 12 in solid Ar, there are three different kinds of
interactions, as indicated in Eq. (20). To make effective use of the SIMD
architecture, we use masking operations for each type of interaction. For
interactions between Ar atoms, the Lennard-Jones potential parameter ε is
represented by an NxN matrix with following matrix elements: etj = £Ar_Ar if i and
j represent the Ar atoms and ε.ή = 0 otherwise. Similar matrices are constructed for
the interactions between Ar and I, and for the Morse oscillator parameters
representing the interaction between I atoms. The potential energy and force
evaluations can be written in a very concise form, and the force evaluation can be
implemented more efficiently, but at the expense of computing terms (albeit in
parallel) which do not contribute to the interparticle forces.

The dependence of the computational time on the number of particles can be
written as:

CPU = AN + CN if N(N-l)/2 < Py

(24)
CPU = AN + CN2 ifN(N-l)/2 > P,

where Ν is the number of particle in the system and Ρ is the number of processors.
For an N-body system with all pair interactions, the benchmark calculation of the
parallel code versus the number of atoms simulated on MP-2204 is shown in Figure
3. In this calculation, we have mapped each pair of interactions to a PE. The
number of pairwise interactions is N(N-l)/2, where Ν is the number of atoms. For
MP-2204, there are 4K PE's. For systems with more than 64 atoms, the parallel
virtual concept, which uses the PE memory as virtual processors, is employed. The
maximum number of atoms one can include in the simulation is limited by the size
of local PE memory. For the MP-2204 with 64 KBytes of local memory, we can
simulate up to 1200 atoms. When using virtual PE's, the relation between the CPU
time and the number of atoms is no longer linear.

We now consider the scalability of the CPU performance with respect to the
number of PE's. Figure 4 shows the CPU time of the MP-1 versus the number of
PE's for a 512 atom system with all pairwise interactions included. A nearly linear
relation was obtained, which indicates very good scalability performance.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

198 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Table 2. The CPU benchmark results of the classical M D code of 512
atoms with all pair interactions for 400 cycles.

Computer C P U Time Mflops
(second)

Peak
Mflops

%Peak

MP-1204 63 62 128 48
MP-1208 32 124 275 45
MP-2204 23 172 600 29
MP-2216 7.7 510 2400 21
Cray Y - M P (unicos) 13 151 330 46
IBM ES9000 (ADC) 74 26.5 50 53
DEC Alpha 3000/400 102 19.2 100 19

SGI Indigo (R4000) 185 10.6
Convex C240 207 9.5 50 19

Table 3. The CPU benchmark results of the quantum molecular dynamics
simulation (TDSCF code) of 17 atoms with a grid size of 256 integrated
for 100 cycles.

Computers CPU Mflops Peak % Peak
(second) Mflops

MP-2204 23 172 600 29
MP-2216 7.7 510 2400 21
Intel Touchstone Delta* 16 255 640 39
Cray Y - M P (unicos) 13 151 330 46

* The timing result is for a 16-node partition.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 199

Quantum System: Molecular Hydrogen Clusters. We now apply the TDSCF
approach to a model system consisting of a collinear ÇtÎ2)ll cluster to demonstrate
the potential use of massively parallel computers in many-body quantum
simulations. The system under consideration consists of a collinear chain of 17
particles with nearest-neighbor interactions. We simulate the dynamics of the para-
hydrogen species; i.e., H2 is in the rotational ground state (J=0). The ratio of the
minor to the major axis of the ellipsoidal electronic charge distribution of the H2
molecule is very close to unity (41). Thus, molecular para-hydrogen can be
represented, for simplicity, as structureless spheres. We denote by xi the Cartesian
coordinate of the atom ι and by req the equilibrium distance between neighboring
atoms. The interaction potential between H2 molecules is modeled by a Morse
potential function. Thus, the total potential function of the model cluster system is

ν{χν---,χη)^Όχΐ-εβ{ΧΜ-χ'-^]\ (25)
i

The Morse potential parameters are De=32.39K,)3=1.65Â~1, and r^=3.44A. These
parameters were obtained by fitting the more accurate but complicated potential
function available from the molecular beam data (42) and ab initio electronic
structure calculations (43-45).

The dependence of the computational time on the number of grid points and
number of modes can be expressed as follows:

CPU = A\nM i f M n < P ,
(26)

An
CPU = — In M if Mn > P,

Ρ

where M is the number of grid points for the wave function discretization, η is
number of TDSCF modes in the system and Ρ is the number of processors. These
expressions result from the fact that both fast Fourier transforms and summations
over PE's, which are required in the evaluations of the Hamiltonian operation and
the TDSCF mean field potential functions, scale as InM.

Comparison with the Cray Y-MP and Other Computers. Table 2 shows the
benchmark calculation of the 512 atom system on a selection of computers.
The implementation on the vector machines was coded in a highly vectorized form
in Fortran 77. The data parallel version of the code on MP-2216 ran 1.7 times faster
than the Y - M P for this problem, and was estimated to be running at about 250
Mflops.

MIMD Computer implementation. The TDSCF approach was also implemented
on a MIMD computer, the Intel touchstone Delta. Here we assign each single mode
wave function to a node. The communication required for evaluating the mean field
potential function was done using an explicit message passing scheme. The timing
results for both the SIMD and MIMD implementations of the TDSCF approach are
listed in Table 3.

Summary and Future Work

In this paper, Parallel versions of classical and quantum molecular dynamics
simulation codes on the MP-2 were described, which achieve a substantial speed-up
over a sequential version of the program on conventional vector or scalar machines.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

200 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

The classical M D code is used routinely for production runs in our studies of rare
gas liquid and photodissociation process in solid state materials. The performance
of 1.7 times of a single processor of Cray Y - M P is obtained. Aided by the parallel
constructs build into the data parallel programming language Fortran 90, we find
the massively parallel computer to be a powerful research tool for molecular
dynamics simulation.

In our present implementation of mapping pairwise interactions onto each PE,
the system size (i.e., number of atoms) amenable to simulation is limited to being
less than Ν = 1300 on the MP-1208. Alternative mapping schemes need to be used
for simulating very large systems. One of these mapping schemes is based on
associating one atom to each PE and using the Verlet neighbor-list or link cell
method to keep track of interacting atoms (46). Efficient parallelization of
neighbor-list generation is a problem which warrants future study.

Acknowledgments. We would like to thank Prof. V . A. Apkarian and Prof. I.
Scherson for helpful discussions. C C M acknowledges support by the National
Science Foundation and the Office of Naval Research. RBG acknowledges support
by the US Air Force Phillips Laboratory (AFMC) under the contract F29601-92K-
0016. The Irvine Research Unit in Advanced Computing is supported by the
National Science Foundation. We also thank the UCI Office for Academic
Computing for technical assistance, and the MasPar Computer Corporation for
partial support through the allocation of computer time on the MasPar MP-2204 and
MP-1208 computers.

References

1. Simulation of Liquids and Solids: Molecular Dynamics and Monte Carlo
Methods in Statistical Mechanics, Ciccotti, G.; Frenkel, D; McDonald, I. R.,
Eds.; Elsevier Science: New York, NY,1987.

2. Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Particles;
Adam Higer: New York, NY, 1989.

3. Allen, M . P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon
Press: Oxford, 1987.

4. Could, H. ; Tobochnik, J. An Introduction to Computer Simulation Methods:
Applications to Physical Systems; Addison-Wesley: Reading, M A , 1988.

5. Rapaport, D. C. Comp. Phys. Comm. 1991, 62, 198.
6. Rapaport, D. C. Comp. Phys. Comm. 1991, 62, 217.
7. Rapaport, D. C. Comp. Phys. Comm. 1993, 76, 301.
8. Molecular Dynamics Simulation of Statistical Mechanical Systems; Ciccotti,

G.; Hoover, W. G., Eds.; North-Holland: Amsterdam, 1986.
9. Smith, W. Comp. Phys. Comm. 1991, 62, 229.
10. Abraham, F. F. Advances in Physics 1986, 35, 1.
11. Finchan, D. Molecular Simulation 1987, 1, 1.
12. MasPar Fortran Reference Manual; Maspar Computer Corporation:

Sunnyvale, C A , 1991.
13. Metcalf, M . ; Reid, J. Fortran 90 Explained; Oxford University Press: New

York, NY, 1990.
14. Blolloch, G. E. Vector Model for Data-Parallel Computing; MIT Press:

Cambridge, M A , 1990.
15. Lewis, T. G.; El-Erwini, H . Introduction to Parallel Computing, Prentice-

Hall: Englewood Cliffs, NJ, 1992.
16. Hillis, W. D. The Connection Machine; MIT Press: Cambridge, M A , 1985.
17. MasPar Parallel Programming Environment; Maspar Computer Corporation:

Sunnyvale, C A 1991.

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 201

18. MasPar Mathematics Library Reference Manual; Maspar Computer
Corporation: Sunnyvale, CA 1992.

19. Goldstein, H. Classical Mechanics, 2nd ed. Addison-Wesley: Reading, MA,
1980.

20. See for example, Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471.
21. Landau, L. D.; Lifshitz, Ε. M. Quantum Mechanics, Pergamon Press: New

York, NY, 1977.
22. Gerber, R. B.; Ratner, M. A. J. Phys. Chem. 1988, 92, 3252.
23. Gerber, R. B.; Kosloff, R.; Berman, M. Comp. Phys. Rep. 1986, 5, 59.
24. Alimi, R.; Gerber, R. B.; Hammerich, A. D.; Kosloff, R.; Ratner, M. A. J.

Chem. Phys. 1990, 93, 6484.
25. Tal-Ezer, H.; Kosloff, R. J. Chem Phys. 1984, 81, 3967.
26. Kosloff, D.; Kosloff, R. J. Comput. Phys. 1983, 52, 35.
27. Kosloff, R.; Kosloff, D. J. Chem. Phys. 1983, 79, 1823.
28. Bisseling, R.; Kosloff, R. J. Comput. Phys. 1985, 59, 136.
29. Chandler, D. Introduction to Modern Statistical Mechanics; Oxford

University Press: New York, NY, 1987.
30. Cellular Automata and Modeling of Complex Physical Systems; Manneville,

P.; Bccara, N.; Vichniac, G. Y.; R. Bidaux, R., Eds.; Springer Proceedings in
Physics 46; Springer-Verlag: Heidelberg, 1989.

31. Vichniac, G. Physica D 1984, 10, 96.
32. Stauffer, D. Physica A 1989, 157, 654.
33. Gerling, R. W. In Computer Simulation Studies in Condensed Matter Physics

III; Landau, D. P.; Mon, Κ. Κ.; Schutler, H.-B.; Springer-Verlag: Heidelberg,
1991.

34 Boyer, L. L.; Pawley, G. S. J. Comp. Phys. 1988, 78, 405.
35. Brooks, C. L.; Young, W. S.; Tobias, D. J. The International Journal of

Supercomputer Applications 1991, 5, 98.
36. Hoffman, D. K.; Shrafeddin, Ο. Α.; Kouri, D. J.; Carter, M. Theo. Chim. Acta.

1991, 79, 297.
37. Press, W. H.; Flannery, B. P.; Teukolsky, S. Α.; Vetterling, W. T. Numerical

Recipes: The Art of Scientific Computing; Cambridge University Press:
Cambridge, 1989.

38. Tellinghuisen, J. J. Chem Phys. 1985, 82, 4012.
39. Alimi, R.; Gerber, R. B.; Apkarian, V. A. J. Chem. Phys. 1990, 92, 3551.
40. Zadoyan, R.; Li, Z.; Ashijian, P.; Martens, C. C.; Apkarian, V. A. Chem Phys.

Lett. 1994, 218, 504.
41. Silvera I. F. Rev. Mod. Phys. 1980, 52 393.
42. Buck, U.; Huisken, F.; Kohlhase, Α.; Otten, D. J. Chem Phys. 1983, 78, 4439.
43. Wind, P.; Roeggen, I. Chem. Phys. 1992, 167, 247.
44. Wind, P.; Roeggen, I. Chem. Phys. 1992, 167, 263.
45. Wind, P.; Roeggen, I. Chem Phys. 1992, 174, 345.
46. Morales, J. J.; Nuevo, M. J. Comp. Phys. Comm 1992, 69, 223.
RECEIVED November 15, 1994

D
ow

nl
oa

de
d

by
 U

N
IV

 O
F

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n
Ju

ne
 2

9,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Chapter 14

Biomolecular Structure Prediction Using
the Double-Iterated Kalman Filter

and Neural Networks

James A. Lupo, Ruth Pachter, Steven B. Fairchild, and W. Wade Adams

Materials Directorate, Wright Laboratory, W L / M L P J ,
Wright-Patterson Air Force Base, O H 45433

The parallelization of the PROTEAN2 molecular structure
prediction code has been completed for the Thinking Machines, Inc.
CM-5. Benchmark and parallel performance analysis results are
summarized and compared with those obtained on a Cray C90 using
multiple processors in autotasking mode. The choice of an optimal
machine is shown to be dependent on the size of the model studied.

In our continuing efforts towards the design of non-linear optical
chromophore containing biomolecules (1,2,3,4) that enable the flexibility of
controlling structure, an integrated computational approach has been developed.
First, a neural network is trained to predict the spatial proximity of C a atoms that
are less than a given threshold apart. The double-iterated Kalman filter (DIKF)
technique (coded in PROTEAN2 (5)) is then employed with a constraints set that
includes these pairwise atomic distances, and the distances and angles that define
the structure as it is known for the individual residues in the protein's sequence.
Finally, the structure is refined by employing energy minimization and molecular
dynamics. Initial results for test cases demonstrated that this integrated approach
is useful for molecular structure prediction at an intermediate resolution (6). In
this paper, we report the parallelization and other aspects of porting PROTEAN2
to the CM-5 and the Cray C90.

Massively parallel processor (MPP) systems use a relatively new
computer architecture concept that may enable significant speedup increases by
allowing a single user to harness many processors for a single task. Experience has
shown, however, that the suitability of any given program to parallelization is
highly dependent on the problem being solved and the machine architecture.
Ultimately, speedup is limited by Amdahl's law expressed as:

0097-6156/95/0592-0202$12.00/0
© 1995 American Chemical Society

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

14. LUPOETAL. Double-Iterated Kalman Filter and Neural Networks 203

where ρ is the number of processors, S is the speedup factor, and a is the
percentage of computing done sequentially, i.e. on one processor (7). Note that
for /?~1, S increases linearly, while for large /?, the nonlinear effects may be
dominant, even i f the percentage of computing done on one processor may
decrease due to the large parts of sequential code.

As a result of Amdahl's law, many programs show significant non-linear
scaling behavior because they contain large parts of sequential code, so that the
execution speed increases less than the increase in the number of processors.
Thus, while the new MPP machines may have impressive theoretical performance
figures, their actual performance is problem dependent, and care must be taken to
find the best machine on which to run a problem. It also implies that considerable
effort is required to find efficient parallel algorithms. In this work we discuss
porting issues, while performance results are summarized that compare the CM-5
with the multiple node Cray C90.

Results and Discussion.

1) Approach. In the first stage, an expert system was used to develop the training
set consisting of specific protein structures obtained from the Brookhaven Protein
Data Base (PDB), with the data files being preprocessed to extract the backbone
atomic coordinates and calculate the appropriate torsion angles. Secondary
structural motifs are determined by searching for sequential residues whose
torsions fall within a user defined tolerance. A neural network learns to predict
secondary structure (8,9), but moreover the spatial proximity of C a atoms.
Tertiary structure information is generated in the form of binary distance
constraints between the C a atoms, being 1 i f their distance is less than a given
threshold, and 0 otherwise. The proteins used in the training set were the first 48
of the set collected by Kabsch and Sander (10), while several of the last sixteen
proteins in this set were for testing (total of 8315 residues). A feed forward neural
network with one hidden layer was used, and backpropagation was the learning
algorithm. Details of this neural network application are described elsewhere (11).

The DIKF (12,13) algorithm is subsequently employed to elucidate the
structure using a data set that includes these pairwise atomic distances, and the
distances that define the chemistry and stereochemistry of the molecular structure.
It is notable that the neural network constraints set was found to be adequate
compared to modeling with an exhaustive set of all C a pair distances derived from
the crystal structure of Crambin (14).

In particular, the structural molecular model of a polypeptide consisting of
Ν atoms is described by the mean cartesian coordinates χ and the covariance
matrix C(x). The elements of C for any two atoms i,j are symmetric:

αχός/ Gxiyj axzj

C(Xij) = <jyxj °yyj oyzj
ozocj aziyj azdj

(2)

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

204 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

The matrices on the diagonal of the covariance matrix (C(xa)) describe the extent
of three dimensional uncertainty in the position of the z-th atom, and the
covariance between two variables (the non-diagonal elements C(xtj)) estimates
their correlation. Distance and dihedral angle measurements are given by:

z=h(x) + v (3)

where ζ is the observed value of the data, h(x) expresses the mathematical
relationship between the state vector variables and the distance and dihedral angle
values, and ν represents the variance of the data.

Given this information, a sequential linear estimator for the minimum variance
estimate of the state is obtained by the extended Kalman filter for non-linear
measurement functions (13):

x(+) = x(-) + K[z-h(x(-))]
(4)

C(+) = C(-)-KHC(-)

where (-) signifies a previous structural representation to be sequentially
updated to (+). The criterion for the choice of the Kalman estimator gain matrix
K, given by:

Κ = C(-)HT[HC(-)HT + v / 1 (5)

is to minimize a weighted scalar sum of the diagonal elements of the error
covariance matrix C. The term within the inverse in the expression for Κ
represents the variance of the observed measurement (C(v) = C(h(x)+ v)). The
first-order Taylor approximation of C(h(x)) is HCHT, where Η is the derivative
of the data model Λ, and HT is the transpose of H. The derivatives of the
distance model are calculated analytically, while the derivatives of the dihedral
angle data model are approximated by using a finite difference calculation. Note
that in addition to the optimality of Κ contained in its structure, it can also be seen
as the ratio between the uncertainty in the estimate and that of the measurement.

The extended Kalman filter approach is used to obtain higher-order non
linear filters by an iterative process:

x(+)k = x(-) + Kk{z-[h(x)k_x) + H(x(-)-x(+)k_x)]} (6)

with a similar expression for C(+)k for any iteration k. This iterative procedure
is carried out for each one of the distance and dihedral angle constraints. However,
since the filter is not optimal in the non-linear case (h(x) in equation (3)), residual
inaccuracies may still result. Therefore, the mean positions obtained after all data
are introduced are used for another cycle of updating. The covariance matrix is
reset to its initial large value in order to allow atoms freedom to move in response
to the constraints, and all measurements are re-introduced into the system for each

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

14. LUPO ET AL. Double-Iterated Kalman Filter and Neural Networks 205

of these doubly-iterated cycles. The successive cycles are repeated until all of the
constraints are satisfied to within a pre-set threshold of standard deviations from
the error e given by:

e=¥x)^~y^ (7)

Applications of the DEKF technique indicate that a known structure can be
reproduced to within a small RMS error even when a limited data set is used
(15,16). Several applications using N M R NOE data utilizing this novel method
proved the approach successful (17,18,19). Note that the input to PROTEAN2 is
automated (20).

a) Crambin and B P T I Study. The neural network results for Crambin
(6) were used for the application with the DIKF. The model system consisted of
327 atoms and pseudo-atoms, 1122 distance constraints, including bond lengths,
distances implied by bond angles, non-bonded distances within well-defined
secondary structural motifs, and 37 dihedral angle constraints. A comparison with
the experimental X-ray structure (12) results in total all-atom average RMS of
2.4Â. Similarly, we have tested the genetically engineered Eglin-C (21), and BPTI
(22/ The model consists of 454 atoms, with 1550 distance and 60 dihedral angle
constraints. Good convergence was obtained (Figure 1). A comparison with the
experimental X-ray structure (22) results in a total all-atom average RMS of 3.5À.

0 0 1 0 20 40 60 60 100 120 140
Iteration

Figure 1 : Average error (SD) vs. number of iterations

These results indicate that such an integrated approach may be useful for
an intermediate biomolecular structure prediction, to be further refined by energy
minimization and molecular dynamics. Thus, the code has been ported and
evaluated the study of larger molecular systems.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

206 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

2) Ports. Portability is an important software engineering issue. In the case of
distributed memory systems, each architecture has its own set of system library
routines which support the passing of data between processors. A program
written explicitly for one architecture will have to be modified when using the
library of another architecture. Given the pervasive nature of data exchange
between processors, this may entail an extensive effort. The message passing code
required also tends to obfuscate the programs general logic flow. These issues
were resolved in this work.

A standard high-level language with embedded compiler directives is
utilized. Indeed, the characteristics of the CM-5 necessitated the use of Fortran-
90. The CM-5 is a distributed memory parallel processor and supports both data
parallel and message passing models of parallel programming. However, the
system software currently does not allow message passing programs to access the
vector processing units on the processing elements. The vector units are currently
supported only by the Fortran-90 compiler, which uses the data parallel
programming model. The program should be portable to other systems
supporting such a compiler, although the Fortran-90 version of PROTEAN2 has
not yet been tested on other systems. The number of memory utilization
compiler directives embedded in the source code and the dependence on the
CMSSL libraries, suggests the amount of porting effort will be strongly machine
dependent.

The PROTEAN2 (5,23) molecular structure code was ported to the CM-5
by translating it from Fortran-77 into Fortran-90. The initial port of PROTEAN2
to the CM-5 was reported earlier (8). However, a system bug in the C M
Scientific Support Library (CMSSL) prevented the program from running large
problems on more than 32 nodes. The source code was thus gradually reduced to
a set of 14 lines of Fortran which replicated the bug. Working from this
demonstration program, the bug in CMSSL could be identified and was thereafter
released in a new version in November 1993. A full set of benchmarking runs were
then performed on the CM-5.

At the same time, experimentation with multiprocessing on a Cray C90
was underway with the fully vectorized version of PROTEAN2. This involved
selection of the proper compiler options to enable autotasking, and setting up the
correct environment variable (NCPUS) to specify the number of processors
desired for a run. Without additional hand optimization, the autotasking support
from the compiler is essentially limited to loop unrolling, with sub-loops assigned
to different processors. The same series of problems run on the CM-5 were run
with two C90 processors.

3) Program Performance. Two molecular models were selected for the
benchmark runs, specifically the genetically engineered protein N-acetyl Eglin-C
(Eglin-C), that contained 530 atoms, with a total of 1776 constraints. A second
system was based on the trp repressor (Trp), and contained 1504 atoms and 6014
constraints (18). Although both the CM-5 and the C90 systems are multi-user,
the CM-5 timing functions are known to be impacted by system load. The timing

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

14. LUPO ET AL. Double-Iterated Kalman Filter and Neural Networks 207

figures presented should therefore be taken as indicative of typical production
runs rather than the absolute best performance.

The timing figures listed by the CM-5 report the total time consumed by
the service partition, while the C90 reports the total time consumed by all
processors assigned to a job as well as the connect time. In the following
comparisons, C90 connect time was assumed to be an equivalent metric to the
total time reported by the CM-5. The C90 also reports the time that is consumed
running on only one processor and the time spent running concurrently on
multiple processors. This makes it easy to gauge parallel performance, but since
internal timing instrumentation reports total CPU time, it also requires that
internal times are converted to equivalent connect times. For a job run on two
nodes, the following equations hold.

T^(2-Cf)Ttotal (8)

τ - τ
1 2 1 total

(,-ΐ)
V c f)

(9)

and

TC = T,+T2 (10)

where Ttotal is the total C90 CPU time, Tj is the CPU time on one node, Τ2 is the
concurrent CPU time on each of the two nodes, Cf is the concurrancy factor, and
Tc is the C90 connect time.

(a) Timing Results. The times reported here are the times it takes to
complete one full iteration cycle, the time spent in the DIKF portion of the code,
and the time spent in the van der Waals correction portion (KVDW). The Eglin-C
model was set up to run on 32, 128, and 256 nodes of the CM-5, while the Trp
model was run on 128, 256, and 512 nodes. Both models were run on two nodes
of the C90. The CM-5 times are shown in Table I while the C90 times are in
Table II.

Comparing the C90 connect times with the CM-5 total times, it is
observed that the two C90 nodes are 3.8 times faster than 32 CM-5 nodes on the
Eglin-C problem. However, 256 nodes on the CM-5 are 2.2 times faster than two
C90 nodes on the Trp problem. In fact, the single node time for the Tip model on
the C90 was 6748 seconds, and the concurrent time on two nodes was 5540
seconds. The single CPU sequential time on the C90 is longer than the CM-5
time. Thus, at best, the C90 could use all 16 processors and reduce the connect
time to 7095 seconds, which is 1.25 times longer than the CM-5 time. The CM-5
is clearly the faster machine for larger problems, while the C90 remains optimal for
smaller problems.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

208 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Table I: CM-5 PROTEAN2 timings for one full iteration (sec)

Model Nodes Total Time DIKFTime KVDWTime

Eglin-C 32 449 177 272

128 436 171 265

256 492 218 274

Trp 128 6799 1031 5768

256 7098 1417 5681

512 8106 2216 5890

Table II: C90 PROTEAN2 timings for one full iteration (sec)

Model Nodes Total DIKF KVDW Con- Connect
Time Time Time currancy Time

Factor

Eglin-C 2 153 131 22 1.30 118
Trp 2 17790 13788 4002 1.45 12288

(b) Parallel Performance. The CM-5 Fortran compiler allows for the
collection of performance profile information. Additional information can also be
collected from the PRISM interactive debugger. On the C90, figures reported by
the Job Accounting system allow one to compute some of the same metrics. Of
particular interest is the parallel efficiency seen on the two machines. For the
Eglin-C model, the C90 achieved a parallel efficiency of 46% while the CM-5
reached 66%. Both machines improved on the larger Trp model, with the C90
reaching 62% and the CM-5 reaching 82%.

Communications is an issue on the CM-5, but not on the C90 since it is a
shared memory system. One performance measure considers the ratio of
communications time to CPU time. For the Eglin-C model, the ratio was 0.51,
while the Trp model had a ratio of 0.72. Considering the parallel efficiency figures
and the communications to CPU times ratios, it is clear that the CM-5 performs
better over all, but becomes communications bound. This explains the lack of
scaling seen in any of the models on the CM-5. Larger problems will make better
use of the CPU's at the expense of increasing communications loads.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

14. LUPO ET AL. Double-Iterated Kalman Filter and Neural Networks 209

Conclusion.

The PROTEAN2 program makes good use of the data parallel programming model
on the CM-5. It does not scale well with the size of problems so far considered,
but it is efficient even though communications bound. For problems of the size of
the Trp model, it is clearly much preferred over the C90. The C90, however, is
not without merit, and does run smaller problems much faster. Given the
availability of both machines, testing a new problem on both should be done prior
to conduction production runs. It should be noted that the creation of an
executable autotasking version of PROTEAN2 on the C90 took less than four man
hours, while nearly two man months were expended getting the Fortran-90 version
to function on the CM-5. No hand optimization has been done to the C90
version, suggesting there is room for future improvements.

Acknowledgments.

This research was supported in part by a grant of High Performance computing
(HPC) time from the DoD HPC Shared Resource Centers. Cray C90 time was
provided by the Army Corps of Engineers Waterways Experimental Station,
Vicksburg MS. This research was supported in part by the Army Research Office
contract number DAALO3-89-C-0038 with the University of Minnesota Army
High Performance Computing Research Center (AHPCRC). The A H P C R C
Thinking Machines Inc. CM-5 timing results are based upon a beta version of the
system software and, consequently, is not necessarily representative of the
performance of the full version of this software.

Literature Cited.

1. Levine, B.F; Bethea, C.G.; Wasserman, E.; Leenders, L. J.; Chem. Phys.
1978, 6, 5042.

2. Ishii, T.; Wada, T.; Garito, Α.; Sasabe, H.; Yamada, Α.; Mat. Res. Soc.
Symp. Proc. 1990, 175, 129.

3. Cooper, T.; Natarajan, L.; Strasser, R.; Pachter, R.; Crane, R.; ACS Pol.
Prep. 1990, 33, 129.

4. Pachter, R.; Cooper, T.; Natarajan, L.V.; Crane, R.; Adams, W.W.;
Biopolymers 1992, 32, 1129.

5. Altman, R.B.; Pachter, R.; Carrara, E.A.; Jardetzky, O.; QCPE 1990, 10 (4),
Program 596.

6. Pachter, R.; Fairchild, S.B.; Lupo, J.A.; Crane, R.L.; Adams, W.W.; Mat.
Res. Soc. Symp. Proc. 1994.

7. Golub, G.; Ortega, G.M.; Scientific Computing: An Introduction with
Parallel Computing, Academic Press, NY, 1993, 66.

8. Holley, L.H.; Karplus, G.; Proc. Natl. Acad. Sci. USA. 1988, 86, 152
and references therein.

D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

210 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

9. Fairchild, S.B.; Pachter, R.; Perrin, R.; Crane, R.L.; Adams, W.W.;
presented at The American Crystallographic Association, Pittsburgh PA,
August, 1992

10. Kabsch, W.; Sanders, C.; FEBS Letters, 1983.
11. Fairchild, S.B.; Pachter, R.; Perrin, R.; Mathematica Journal, in press.
12. Altman, R.B.; Jardetzky, O.; Methods in Enzymology 1989, 177, 218.
13. Gelb, Α., Applied Optimal Estimation, MIT Press, 1984.
14 . Teeter, M.M.; Proc. Nat. Acad Sci. USA 1984, 81, 6014.
15. Altman, R.; Pachter, R.; Jardetzky, O.; in 'Protein Structure and

Engineering', (O. Jardetzky, Ed.), Plenum Press, New York, 1989, pp79.
16. Pachter, R.; Altman, R.; Jardetzky, O.; J. Magn. Reson. 1990, 89, 578.
17. Arrowsmith, CH.; Pachter, R.; Altman, R.; Iyer, S.B.; Jardetzky, O.;

Biochemistry 1990, 29, 6332; Arrowsmith, C.H.; Pachter, R.; Altman, R.;
Jardetzky, O.; FEBS Eur. J. Biochemistry 1991, 202, 53.

18. Altman, R., C.H. Arrowsmith, Pachter, R.; Jardetzky, O.; in
'Computational Aspects of the Study of Biological Macromolecules by
NMR Spectroscopy', (J.C. Hoch, Ed.), Plenum Press, New York 1991,
pp375; Altman, R.; Pachter, R.; Jardetzky, O.; Applied Magn. Reson.
1993, 4, 441.

19. Pachter, R.; Altman, R.; Czaplicki, J.; Jardetzky, O.; J. Magn. Reson. 1991,
92, 648.

20. Pachter, R.; Programs: PROPARE, PROCON, PROCOPY,
unpublished.

21 . McPhalen, C.A.; James, M.N.G.; Biochemistry 1988, 27, 6582.
22. Pachter, R.; Lupo, J.A.; Fairchild, S.B.; manuscript in preparation.
23 . Lupo, J.A.; Contributive Research and Development Volume 95, Modeling

of NLO Materials Using Parallel Computers, Final Report Task 79,
Contract F33615-90-C-5944, Wright Laboratory, Wright-Patterson AFB
OH, 1993, 1994.

Received November 15, 1994 D
ow

nl
oa

de
d

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n
Ju

ne
 2

8,
 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
4

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Author Index
Adams, W. Wade, 202
Bagheri, Babak, 170
Baldridge, Kim K., 29,97
Bierwagen, Erik P., 84
Boatz, Jerry Α., 29
Briggs, James M . , 170
Coley, Terry R., 84
Colvin, M . E., 47
Cundari, Thomas R., 29
Dachsel, Holger, 75
Fairchild, Steven B., 202
Frisch, Michael J., 62
Gerber, R. Benny, 186
Goddard, William Α., ΙΠ, 84
Gordon, Mark S., 16,29
Harrison, Robert J., 75
Hendrickson, Bruce, 114
Ilin, Andrew, 170
Janssen, C. L. , 47

Jensen, Jan H., 29
L i , Zhiming, 186
Lischka, Hans, 75
Lupo, James Α., 202
Martens, Craig C , 186
Matsunaga, Nikita, 29
Mattson, Timothy G., 1,133
McCammon, J. Andrew, 170
Pachter, Ruth, 202
Plimpton, Steve, 114
Ravishanker, Ganesan, 133
Schmidt, Michael W., 16,29
Scott, L. Ridgway, 170
Seidl, E. T., 47
Shepard, Ron, 75
Trucks, Gary W„ 62
Turner, David P., 62
Windemuth, Andreas, 151
Windus, Theresa L. , 16,29

Affiliation Index
Argonne National Laboratory, 75
California Institute of Technology, 84
Columbia University, 151
Edwards Air Force Base, 29
Hebrew University of Jerusalem, 186
Intel Corporation, 1,133
Iowa State University, 16,29
Lorentzian, Inc., 62
Northwestern University, 16,29
Pacific Northwest Laboratory, 75

San Diego Supercomputer Center, 29,97
Sandia National Laboratories, 47,114
Scientific Computing Associates, 62
Universitàt Wien, 75
University of California—Irvine, 186
University of Houston, 170
University of Memphis, 29
Wesleyan University, 133
Wright-Patterson Air Force Base, 202

Subject Index

A Ab initio methods, advantages and
disadvantages, 98

Ab initio electronic structure theory, Ab initio multireference configuration
applications, 62 program, parallelization, 75-82

213

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
1

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

Author Index
Adams, W. Wade, 202
Bagheri, Babak, 170
Baldridge, Kim K., 29,97
Bierwagen, Erik P., 84
Boatz, Jerry Α., 29
Briggs, James M . , 170
Coley, Terry R., 84
Colvin, M . E., 47
Cundari, Thomas R., 29
Dachsel, Holger, 75
Fairchild, Steven B., 202
Frisch, Michael J., 62
Gerber, R. Benny, 186
Goddard, William Α., ΙΠ, 84
Gordon, Mark S., 16,29
Harrison, Robert J., 75
Hendrickson, Bruce, 114
Ilin, Andrew, 170
Janssen, C. L. , 47

Jensen, Jan H., 29
L i , Zhiming, 186
Lischka, Hans, 75
Lupo, James Α., 202
Martens, Craig C , 186
Matsunaga, Nikita, 29
Mattson, Timothy G., 1,133
McCammon, J. Andrew, 170
Pachter, Ruth, 202
Plimpton, Steve, 114
Ravishanker, Ganesan, 133
Schmidt, Michael W., 16,29
Scott, L. Ridgway, 170
Seidl, E. T., 47
Shepard, Ron, 75
Trucks, Gary W„ 62
Turner, David P., 62
Windemuth, Andreas, 151
Windus, Theresa L. , 16,29

Affiliation Index
Argonne National Laboratory, 75
California Institute of Technology, 84
Columbia University, 151
Edwards Air Force Base, 29
Hebrew University of Jerusalem, 186
Intel Corporation, 1,133
Iowa State University, 16,29
Lorentzian, Inc., 62
Northwestern University, 16,29
Pacific Northwest Laboratory, 75

San Diego Supercomputer Center, 29,97
Sandia National Laboratories, 47,114
Scientific Computing Associates, 62
Universitàt Wien, 75
University of California—Irvine, 186
University of Houston, 170
University of Memphis, 29
Wesleyan University, 133
Wright-Patterson Air Force Base, 202

Subject Index

A Ab initio methods, advantages and
disadvantages, 98

Ab initio electronic structure theory, Ab initio multireference configuration
applications, 62 program, parallelization, 75-82

213

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

214 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Ab initio programs, parallel,
object-oriented implementation, 47-61

Ab initio quantum chemistry on
workstation cluster

analysis of state information, 65-66
code structure, 66-67
experimental description, 63-64
future work, 71
Gaussian architecture, 64
Linda fundamentals, 65
shared-memory Gaussian, 64-65
test cases, 68-71,73-74

Abstract data types, description, 49
Algorithmic motifs
domain decomposition, 8-10
examples, 7
loop splitting, 8-9
master-worker, 11-12

Algorithm(s)
molecular dynamics simulation,

151-167
parallel computing

granularity, 7-8
levels, 7
motifs, 7-12

All-to-all communication, definition, 9
Amdahl's law, description, 13
Analytic Hessians
steps, 24
timing example, 24-25

Anharmonic two-dimensional lattice
model system, simulation on distributed-
memory massively parallel
computers, 193-194,195/

Applications
object-oriented implementation of

parallel ab initio programs, 53-59
parallel GAMESS

B N prismanes, 29-31,32/
cyclophanes, 33
glycine isomerization, 37-38,39^0/
graphics, 41,43-45
phosphatranes, 35,37
silatranes, 33,36
tetrasilabicyclobutanes, 31,34/,35r
transition metal complexes, 38,41,42/

Atomic to molecular orbital integral
transformation, parallel
implementation of GAMESS, 21-22

Β

Basis functions, definition, 98
Benchmark simulation of Lennard-Jones

systems, use of parallel molecular
dynamics algorithms, 114-130

Biomolecular structure prediction
development of computational

approach, 202
use of double-iterated Kalman filter and

neural networks
comparison to Cray C90, 206-208
double-iterated Kalman filter algorithm

approach, 203-205
performance
parallel performance, 208
timing results, 206-208

portability, 206
Biorthogonalization, description, 85
Blocked distribution, description, 9
B N prismanes, potential energy surface

study using parallel GAMESS,
29-31,32/

Bond potential, calculation, 156
BPTI, biomolecular structure prediction

using double-iterated Kalman fdter
and neural networks, 205

Brownian dynamics simulation,
parallelization, 170-183

Brownian dynamics trajectory,
parallelization with Poisson-
Boltzmann, 182,183/

C

C++, advantages and disadvantages as
object-oriented language, 52-53

Cage compounds, application of parallel
GAMESS, 31,33,37

Cell multipole method, description, 157
C H A R M M force field, description,

154-155

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

INDEX 215

Circle intersection method of PDM,
computation time, 163-164

Classical molecular dynamics simulation
mapping each atom onto each virtual

processing element, 191-192
mapping each pair of interactions onto

each virtual processing element, 192
theory, 188-189
use on distributed-memory massively

parallel computers, 186-200
C M - 5 , biomolecular structure prediction

using double-iterated Kalman filter
and neural networks, 202-208

Coarse grained, description, 7
Code optimization effort, identification

of operations that dominate quantity
being optimized, 63

COLUMBUS program system
description, 76-77
parallelization, 75-82

Computational chemist(s), demands
placed on computers, 1

Computational chemistry applications,
parallel computers, 1

Computationally derived chemical and
physical properties, importance, 97

Continuum models
computer demands, 170-171
simulations of solvent and secondary

solute species, 170
Coordination model, description and

examples, 6
Coulomb potential, calculation, 156-157
Cray C90, comparison to CM-5 for bio

molecular structure prediction, 206-208
Cyclic distribution, description, 8
Cyclopentadienyl anion, calculation of

resonance energy, 94-95
Cyclophanes, application of parallel

GAMESS, 33

D

Data distribution, 152-154
Data parallel implementations of molecular

dynamics simulation
classical molecular dynamics simulation,

191-192

Data parallel implementations of molecular
dynamics simulation—Continued

quantum molecular dynamics simulation,
192-193

Data parallelism, description and example, 6
Data sloshing, description, 2
1,6-Didehydro[10]annulene, calculation

of resonance energy, 94-95
Distance class algorithm
advantages, 160
classes, 160-161
concept, 160
performance, 161-162

Distributed-memory massively parallel
computers, classical and quantum
molecular dynamics simulation, 186-200

Distributed-memory multiple-instruction
multiple-data computers, 3

Distributed shared memory, example, 10
Dodecamer sequence of DNA, portable

molecular dynamics software for
parallel computing, 146-148

Domain decomposition algorithm, 10
Double-iterated Kalman filter techniques
biomolecular structure prediction,

202-208
description, 202

Dynamic load balancing, description, 12
Dynamic typing, description, 60

Ε

Efficiency
calculation, 67
performance measurement, 13-14
quantitative definition, 13

Eglin-C, biomolecular structure prediction
using double-iterated Kalman filter
and neural networks, 205

Eisenstat's implementation,
parallelization of Poisson-Boltzmann
and Brownian dynamics calculations,
176-177

Elapsed wall clock time, measurement, 67
Electron transfer elements of Hartree-Fock

and generalized valence bond wave
functions, parallel calculations, 84-95

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

216 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Electronic structure code(s)
GAMESS, See Parallel GAMESS
parallelization studies, 63

Electrostatic(s), mathematical model, 171
Electrostatic interactions, role in

determination of stability of
conformations and complexes of solute
molecules in solution, 170

Electrostatic potential surface around
enzyme, parallelization of
Poisson-Boltzmann and Brownian
dynamics calculations, 182,183/

Embarrassingly parallel, description, 11
Encapsulation, concept, 48-49

F

Fast multipole algorithm
concept, 157-159
parallel implementation, 159-160
scalability, 157

Fine grained, description, 7
Force-decomposition method for molecular

system simulation
advantages, 121
algorithm, 119-121
characterization, 129-130
description, 119,120/

FORMF class, massively parallel quantum
chemistry codes, 58,59/

G

GAMESS
description, 16-17
parallel, See Parallel GAMESS

Gaussian Unix version, 64
Gaussian series of programs, advantages

and disadvantages, 62
Generalized valence bond wave functions,

parallel calculation of electron
transfer and resonance matrix elements,
84-95

Geometric decomposition algorithm, 10

Geometry optimization component of
MOPAC

evaluation
derivatives, 103-104
one- and two-electron elements, 102,104

formation of Fock matrix and
diagonalization, 102-104

tasks, 101
Global broadcast, description, 19
Global sum, pseudocode, 141,144
Global summation, description, 9,19
Glycine isomerization, application of

parallel GAMESS, 37-38,39^0/
Granularity

description, 7
role in effectiveness of algorithm, 8

Graphics, parallel GAMESS, 41,43-45

H

Hardware, parallel computing, 2
Hartree-Fock wave functions, parallel

calculation of electron transfer and
resonance matrix elements, 84—95

Highly strained rings, application of
parallel GAMESS, 29-35

Implementation of efficient ab initio
quantum chemistry programs, reasons
for slow change, 47-48

Incomplete Cholesky factorization,
parallel preconditioning, 173-175

Integral transformation of atomic to
molecular orbitals, parallel
implementation of GAMESS, 21-22

Linda
advantages for parallel programming, 63
fundamentals, 65
operations, 139
placeholders, 139-140
shared-memory access, 139

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

INDEX 217

Links, description, 64
Load balance, 12
LOOP balancing, description, 18-19
Loop splitting, description, 138
Loop splitting algorithm
advantages and disadvantages, 9-10
applications, 8
example, 8-9

Lophotoxin, use of semiempirical quantum
methods for geometry optimization and
vibrational analysis calculations,
105,108-109,110/

M

MasPar MP2 massively parallel computer
system

hardware overview, 187
math and data display library, 188
programming environment, 188
programming model, 187-188

Massively parallel computers, distributed
memory, classical and quantum
molecular dynamics simulation, 186-200

Massively parallel processor systems
advantages, 202
problem dependency, 202
speedup limitations, 202-203

Massively parallel quantum chemistry
codes

application of object-oriented design
principles, 53-59

dynamic typing, 60
F O R M F class, 58,59/
M A T R I X class, 55-58
memory management, 60
ΜΡ2 class, 58-59
object-oriented design, 54-55
persistence, 61

Master-worker algorithms, 11-12
MATRIX class, massively parallel quantum

chemistry codes, 55-58
Memory management, description, 60
Message-passing architectures, 3
Molecular dynamics

applications, 114
use of parallel computers for

simulations, 114

Molecular dynamics algorithms, parallel,
See Parallel molecular dynamics
algorithms for molecular system
simulations

Molecular dynamics method
classical molecular dynamics simulation,

188- 189
quantum molecular dynamics simulation,

189- 190
trajectory propagation by velocity

Verlet algorithm, 189
wave packet propagation by grid method,

190- 191
Molecular dynamics simulation

applications, 186
boundary conditions, 135
compute intensive, 133
distributed-memory massively parallel

computers
anharmonic two-dimensional lattice

model system, 193-194,195/
comparison with other computers,

198U99
computer system, 187-188
data parallel implementations,

191-193
experimental description, 186-187
future work, 200
molecular hydrogen clusters, 197
multiple-instruction multiple-data

computer implementation, 198i,199
photodissociation dynamics of I 2 in rare

gas solids, 194,196/197
theory, 188-191

dusty deck problem, 133-134
importance, 151
PMD, 152-167
programs, 152
requirements, 151
role of parallel computers, 133
steps, 135

Molecular dynamics software for parallel
computing, portable, See Portable
molecular dynamics software for
parallel computing

Molecular hydrogen clusters, simulation on
distributed-memory massively parallel
computers, 199

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

218 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Molecular mechanics methods, advantages
and disadvantages, 98

Molecular orbitals of wave functions,
property calculation, 84-85

Molecular properties, theoretical study
methods, 97-98

Molecular systems, simulation using
parallel molecular dynamics
algorithms, 114-130

MOP A C , parallel, See Parallel MOPAC
Motifs, algorithmic, See Algorithmic

motifs
MP2 class, massively parallel quantum

chemistry codes, 58-59
MP2 code, parallel, 25-26
MP2 computer, description, 2
Multiconfiguration self-consistent field

approach for parallel implementation
of GAMESS

applications, 23-24
bottlenecks in calculation, 23
choice of starting orbitals, 22-23
partitioning of molecular orbitals into

three spaces, 22
Multiple-instruction multiple-data

computers
description, 2
distributed memory, 2-3
market, 5
shared memory, 2-3

Multireference single- and double-
excitation configuration interaction,
reasons for use, 75

Myoglobin, simulation using parallel
molecular dynamics algorithms, 126-128

Ν

NBSTST subroutine, parallel,
pseudocode, 141,143/

Neural networks, biomolecular structure
prediction, 202-208

Nobornyne cyclotrimer, use of
semiempirical quantum methods for
geometry optimization and vibrational
analysis calculations, 109,110/

Nodes, definition, 2
Nonbond potential, calculation, 156
Nonorthogonal configuration interaction

approaches, advantages, 85
Nonorthogonal wave functions, resonance

matrix element calculation, 85
Numerical computation, importance, 62
Numerical method, parallelization of

Poisson-Boltzmann and Brownian
dynamics calculations, 171-173

N X T V A L balancing, description, 19

Ο

Object-oriented implementation of parallel
ab initio programs

abstraction approach, 49-51
advantages, 48
application, 53-59
dynamic typing, 60
encapsulation approach, 48^49
future, 59
languages, 52-53
memory management, 60
persistence, 61

Owner-computes filter, description, 138

Ρ
Parallel ab initio programs,

object-oriented implementation, 47-61
Parallel calculation of electron transfer

and resonance matrix elements of
Hartree-Fock and generalized valence
bond wave functions

algorithm, 87-88
C++ programming language, 92
computational theory, 86-87
design goals, 86
load balancing, 91-92
pipeline algorithm, 88-89
program architecture, 92-93
timing tests, 94-95
Tool Command Language enabled

objects, 93
Tool Command Language interpreter, 93
truncated wave front, 89-90

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

INDEX 219

Parallel code, debugging, 19-20
Parallel computers

architectures, 2
computational chemistry applications, 1
cost effectiveness of hardware, 1
examples, 3-5
hardware, 2
importance, 75
performance measurement, 12-14
portable molecular dynamics software,

133-149
programming, 5-7
simplifications to begin, 14
software costs, 1

Parallel computing
algorithms, 7-12
definition, 1

Parallel GAMESS
advantages and disadvantages, 20
analytic Hessians, 24—25
applications, 29-45
atomic to molecular orbital integral

transformation, 21-22
communication software, 17-18
computational bottleneck

identification, 18
considerations, 18
debugging parallel code, 19-20
description of GAMESS, 16-17
future work, 26
global broadcast, 19
load balancing methods, 18-19
multiconfiguration self-consistent field

approach, 22-24
parallel MP2 code, 25-26
self-consistent field parallelization,

20-21
single-program multiple-data model, 17
stub routines, 20
summary, 26

Parallel molecular dynamics algorithms
for molecular system simulations

benchmark simulation of
Lennard-Jones systems, 124-126

characteristics of systems, 129-130
computational aspects, 115-116

Parallel molecular dynamics algorithms
for molecular system simulations—
Continued

experimental description, 114-115
force-decomposition method, 119-121
myoglobin, 126-128
replicated-data method, 116-119
spatial-decomposition method, 121-124

Parallel MOPAC
geometry optimization component,

101-104
structure, 100-101
task distribution, 100-101
vibrational analysis component,

103-104
Parallel MP2 code, transformation, 25-26
Parallel NBSTST subroutine, pseudocode,

141,143/
Parallel preconditioning, parallelization

of Poisson-Boltzmann and
Brownian dynamics calculations,
173-175

Parallel programming, difficulty, 1
Parallel semiempirical methods

code memory requirement limitation, 109
code performance, 105,106/
future research, 111
geometry optimization component,

101-104
instability limitation, 109,111
method description, 99-100
Mflop rate vs. size of molecular system

for geometry optimization and
vibrational analysis calculations,
109,110/

molecular structures, 105,107/
parallelization vs. tasks of geometry

optimization calculation,
105,108/109

speedup vs. number of processors
geometry optimization calculation,

105,108/
vibrational analysis calculation,

109,110/
structure and task distribution, 100-101
vibrational analysis component, 103-104

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

220 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Parallel WESDYN program
programming environment, 138-140
pseudocode

global sum, 141,144
master process, 140-141
NBSTST subroutine, 141,143/
owner-computes filter, 144-145
WESDYNO subroutine, 141,142/
worker process, 141

TCGMSG version, 145-146
Parallelism, potential in scientific

applications, 186
Parallelization

COLUMBUS program system
benchmark calculations, 80-81
dynamic load balancing improvements,

79-80
efficiency, 81
experimental description, 75-76
future work, 82
global arrays, 79
overall efficiency, 77
previous research, 76-77
speedup curves, 80-81
virtual disk and data compression,

77-78
Poisson-Boltzmann and Brownian

dynamics calculations
applications, 182,183/
Brownian dynamics simulations,

177-178
Eisenstat's implementation, 176-177
experimental description, 170
mathematical model of electronics, 171
modification, 176
numerical method, 171-173
parallel preconditioning, 173-175
performance, 179-181
random number generator, 178-179
scaling, 176

self-consistent field programs, 75
Parallelized PROTEAN2, biomolecular

structure prediction, 202-208
Patches, definition, 155-156
Perfectly linear speedup, description, 13
Performance measurement
efficiency, 13-14
load balance, 12

Performance measurement—Continued
speedup, 13

Persistence, description, 61
Phosphatranes, application of parallel

GAMESS, 37
Photodissociation dynamics of I 2 in rare

gas solids, simulation on distributed-
memory massively parallel computers,
194,196/197

Pipeline algorithms, description, 5
Place holders
examples, 139-140
specification, 139

PMD for molecular dynamics simulation
circle intersection method, 163-164
computation time, 163-164
data distribution, 152-154
design principles, 152
distance class algorithm, 160-162
fast multipole algorithm, 157-160
future work, 166
goal, 152
implementation, 165
molecular structure, 155-156
performance, 165-166,167/
potential function, 155-156
principal components, 164—165
solvent accessible area, 162-163

Poison pill, description, 11
Poisson-Boltzmann calculations,

parallelization, 170-183
Portable molecular dynamics software for

parallel computing
dodecamer sequence of DNA, 146-148
dusty deck problem, 133-134
future work, 149
guidelines, 134
parallel WESDYN program, 138-145
sequential WESDYN program, 135-138
software engineering problems, 134
TCGMSG version of parallel W E S D Y N

program, 145-146
Programming environment, 6-7
Programming model
data parallelism, 6
description, 5
importance, 6
task parallelism, 5-6

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

INDEX 221

Propagation, wave packet, grid method,
190-191

PROTEAN2, parallelized, biomolecular
structure prediction, 202-208

Q

Quantum chemistry, ab initio, workstation
cluster, 62-74

Quantum Mechanical View, visualization
package for parallel GAMESS, 43^15

Quantum molecular dynamics simulation
data parallel implementations, 192-193
theory, 189-190
use on distributed-memory massively

parallel computers, 186-200

R

Random number generator, parallelization
of Poisson-Boltzmann and Brownian
dynamics calculations, 178-179

Replicated-data method for molecular
system simulation

algorithm, 117-119
characteristics, 129-130
description, 116-117

Replicated-data single-program multiple-
data program, description, 8

Residues, definition, 155
Resonance energy, calculation, 94-95
Resonance matrix elements of Hartree-

Fock and generalized valence bond
wave functions, parallel calculation,
84-95

S

Scalability of algorithm, description, 9
Scalable system, description, 3
Scaling, parallelization of

Poisson-Boltzmann and Brownian
dynamics calculations, 176

SCFWAVEFUNCTION

abstraction, 50-51
encapsulation, 49

Self-consistent field computations,
description, 99

Self-consistent field parallelization,
implementation in GAMESS, 20-21

Semiempirical methods
advantages and disadvantages, 98
parallel, See Parallel semiempirical

methods
Semiempirical quantum methods, solution

of molecular Schrôdinger equation,
99-100

Sequential W E S D Y N program
applications, 135
pseudocode, 135-138

Shared-memory Gaussian, description,
64-65

Shared-memory multiple-instruction
multiple-data computers, examples, 3

Silatranes, application of parallel
GAMESS, 35-36

Single-instruction multiple-data computer
advantages and disadvantages of single-

instruction stream, 2
description, 2
market, 5

Single-program multiple-data model
description, 6
parallel implementation of GAMESS, 17

Solvent-accessible area, simulation using
PMD, 162-163

Spatial-decomposition algorithms for
molecular dynamics, description, 10

Spatial-decomposition method for
molecular system simulation

advantages and disadvantages, 123-124
algorithm, 122-123
characteristics, 129-130
description, 121-122

Specialization
abstract data type, 49
description, 50

Speedup
calculation, 67
definition, 13
limitations, 202-203
performance measurement, 13

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

222 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY

Static load balancing, description, 12
Strand parallel programming language,

description, 5
Strongly typed object-oriented languages
advantages, 52
examples, 52-53

Structure prediction using double-iterated
Kalman filter and neural networks,
biomolecular, 202-208

Stub routines, parallel implementation of
GAMESS, 20

Synchronization barrier, definition, 9

Τ

Task parallelism, examples, 5-6
Task queue algorithms, 11-12
Taxol derivative, use of semiempirical

quantum methods for geometry
optimization and vibrational analysis
calculations, 105,108-109,110/

TCGMSG version, parallel WESDYN
program, 145-146

Tetrasilabicyclobutanes, potential energy
surface study using parallel GAMESS,
31,34/35i

Time-dependent self-consistent field
method, quantum molecular dynamics
simulation on distributed-memory
massively parallel computers, 190-200

Topology, description, 3
Trajectory propagation, 189
Transition metal complexes, applications

of parallel GAMESS, 38,41,42/

V

Velocity Verlet algorithm, trajectory
propagation, 189

Vibrational analysis component of
MOPAC, procedure, 103-104

Voronoi decomposition
advantages, 153
description, 153,154/

W

Wave packet propagation, grid method,
190-191

Weakly typed object-oriented languages,
advantages, 52

W E S D Y N program
parallel, See Parallel WESDYN program
sequential, 135-138

Workstation, availability advantage,
62-63

Workstation cluster
ab initio quantum chemistry, 62-74
description, 3

Production: Amie Jackowski & Charlotte McNaughton
Indexing: Deborah H. Steiner
Acquisition: Rhonda Bitterli

Cover design: Amy Hayes

Printed and bound by Maple Press, York, PA

D
ow

nl
oa

de
d

by
 8

9.
16

3.
35

.4
2

on
 J

un
e

28
, 2

01
2

| h
ttp

://
pu

bs
.a

cs
.o

rg

 P
ub

lic
at

io
n

D
at

e:
 M

ay
 1

7,
 1

99
5

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.;
ACS Symposium Series; American Chemical Society: Washington, DC, 1995.

	bk-1995-0592_cover
	bk-1995-0592.fw001
	Title Page
	Copyright
	1995 Advisory Board
	Foreword

	bk-1995-0592.pr001
	Preface

	bk-1995-0592.ch001
	Chapter 1 Parallel Computing
	What is Parallel Computing?
	How to Program Parallel Computers
	Algorithms for Parallel Computing
	How is Performance Measured?
	Conclusion
	References

	bk-1995-0592.ch002
	Chapter 2 Parallel Implementation of the Electronic Structure Code GAMESS
	A. Brief overview of GAMESS
	B. Model, communication software, and general ideas
	C. SCF Parallelization
	D. Integral Transformation
	E. Approach to MCSCF
	F. Analytic Hessians
	G. Parallel MP2 Code
	H. Conclusions
	Acknowledgement
	References

	bk-1995-0592.ch003
	Chapter 3 Applications of Parallel GAMESS
	I. Highly Strained Rings
	A. BN Prismanes
	B. Tetrasilabicyclobutanes

	II. Cage Compounds
	A. Cyclophanes
	B. Silatranes
	C. Phosphatranes

	III. Glycine Isomerization
	IV. Transition Metal Complexes
	V. Graphics for the Parallel World
	Acknowledgments
	Literature Cited

	bk-1995-0592.ch004
	Chapter 4 Object-Oriented Implementation of Parallel Ab Initio Programs
	The Object Oriented Approach
	Object Oriented Languages
	Applications to Ab Initio Chemistry
	Conclusions
	Appendix
	Acknowledgments
	Literature Cited

	bk-1995-0592.ch005
	Chapter 5 Ab Initio Quantum Chemistry on a Workstation Cluster
	Background
	Implementation
	Parallel Results
	Future Work
	Conclusions
	References
	Appendix

	bk-1995-0592.ch006
	Chapter 6 The Parallelization of a General Ab Initio Multireference Configuration Interaction Program The COLUMBUS Program System
	Review of our Previous Work
	Outline of the New Features
	Benchmark Calculations
	Conclusions and Outlook
	Acknowledgments
	References

	bk-1995-0592.ch007
	Chapter 7 Parallel Calculation of Electron-Transfer and Resonance Matrix Elements of Hartree—Fock and Generalized Valence Bond Wave Functions
	Method
	Algorithm
	Program Architecture
	Results and Discussion
	Literature Cited:

	bk-1995-0592.ch008
	Chapter 8 Promises and Perils of Parallel Semiempirical Quantum Methods
	Semiempirical Quantum Methods
	Parallel MOPAC: Structure and Task Distribution
	Geometry Optimization Component
	Vibrational Analysis Component
	Results
	Discussion
	Conclusions
	Acknowledgments
	Literature Cited

	bk-1995-0592.ch009
	Chapter 9 Parallel Molecular Dynamics Algorithms for Simulation of Molecular Systems
	Computational Aspects
	Replicated-Data Method
	Force-Decomposition Method
	Spatial-Decomposition Method
	Results
	Conclusions
	Acknowledgments
	References

	bk-1995-0592.ch010
	Chapter 10 Portable Molecular Dynamics Software for Parallel Computing
	The Sequential WESDYN program
	The parallel WESDYN program
	pWESDYN program: the TCGMSG version
	Results
	Conclusion
	References

	bk-1995-0592.ch011
	Chapter 11 Advanced Algorithms for Molecular Dynamics Simulation The Program PMD
	Data Distribution
	Molecular Structure and Potential Function
	The Fast Multipole Algorithm
	The Distance Class Algorithm
	Solvent accessible area and the Circle Intersection Method
	Implementation and Performance
	Discussion and Outlook
	Acknowledgment
	Literature Cited

	bk-1995-0592.ch012
	Chapter 12 Parallelization of Poisson—Boltzmann and Brownian Dynamics Calculations
	Mathematical Model of Electrostatics
	Numerical method
	Parallel preconditioning
	Scaling and Modification
	Eisenstat's implementation
	Brownian Dynamics
	Main Steps of Brownian Dynamics Simulation
	Random Number Generator
	Parallel Performance
	Sample Applications
	Conclusions
	Acknowledgments
	Literature Cited

	bk-1995-0592.ch013
	Chapter 13 Classical and Quantum Molecular Dynamics Simulation on Distributed-Memory Massively Parallel Computers
	The MasPar MP-2 Massively Parallel Computer System
	Theoretical Background of the Molecular Dynamics Method.
	Data Parallel Implementations of Molecular Dynamics Simulation
	Timings and Performance Measurements
	Summary and Future Work
	References

	bk-1995-0592.ch014
	Chapter 14 Biomolecular Structure Prediction Using the Double-Iterated Kalman Filter and Neural Networks
	Results and Discussion.
	Conclusion.
	Acknowledgments.
	Literature Cited.

	bk-1995-0592.ix001
	Author Index
	Affiliation Index

	bk-1995-0592.ix002
	Subject Index
	A
	Β
	C
	D
	Ε
	F
	G
	H
	I
	L
	M
	Ν
	Ο
	P
	Q
	R
	S
	Τ
	V
	W

