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Foreword 

THE ACS SYMPOSIUM SERIES was first published in 1974 to 
provide a mechanism for publishing symposia quickly in book 
form. The purpose of this series is to publish comprehensive 
books developed from symposia, which are usually "snapshots 
in time" of the current research being done on a topic, plus 
some review material on the topic. For this reason, it is neces
sary that the papers be published as quickly as possible. 

Before a symposium-based book is put under contract, the 
proposed table of contents is reviewed for appropriateness to 
the topic and for comprehensiveness of the collection. Some 
papers are excluded at this point, and others are added to 
round out the scope of the volume. In addition, a draft of each 
paper is peer-reviewed prior to final acceptance or rejection. 
This anonymous review process is supervised by the organiz
er^) of the symposium, who become the editor(s) of the book. 
The authors then revise their papers according to the recom
mendations of both the reviewers and the editors, prepare 
camera-ready copy, and submit the final papers to the editors, 
who check that all necessary revisions have been made. 

As a rule, only original research papers and original re
view papers are included in the volumes. Verbatim reproduc
tions of previously published papers are not accepted. 

M. Joan Comstock 
Series Editor 
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Preface 

A P A R A L L E L COMPUTER IS A SUPERCOMPUTER built from simpler 
computers. This includes everything from 16 heads of Cray C-90 comput
ers to 3600 microprocessors in Intel's Paragon computers to 16,384 pro
cessing elements in a MasPar MP-2. In every case, the motivation is the 
same: How do you get more computing done in less time and for less 
money? 

Getting more of anything for less money sounds like a smoke-and-
mirrors trick. With parallel computing, however, it isn't a trick. Parallel 
computers really do provide the ultimate performance, and because they 
are built from simpler (and usually standard) components, they really do 
cost less. So why isn't all supercomputing done on parallel computers? 

The answer is software. To take advantage of a parallel computer, a 
user needs to have software that runs in parallel. Without a "critical 
mass" of application software, parallel computers are computer science 
research machines or specialized tools for big-budget projects. 

So where are we with regard to software? Serious parallel application 
development has been going on for a little more than 10 years. We have 
learned a lot in the past decade and now understand how to write 
software for parallel computers. But have we reached a critical mass of 
computational chemistry applications? 

I believe we reached critical mass for parallel chemistry software 
within the past year. Computational chemists can now find software for 
most types of chemical computation. This fact is not widely known out
side of a small group of parallel computational chemists, so I worked with 
Michel Dupuis and Steven Chin (both of IBM) to reach out to computa
tional chemists at large with a symposium titled "Parallel Computing in 
Computational Chemistry." 

The symposium was organized around two types of papers called 
"show-and-tell" and "nuts-and-bolts". The show-and-tell papers were 
aimed at software users and stressed the scientific problems solved on 
parallel computers. The nuts-and-bolts papers were directed at software 
developers and covered the algorithms and software techniques used for 
parallel computing. 

This book is based on that symposium. The connection is a loose 
one, however, because the book emphasizes the nuts-and-bolts papers, 
whereas the symposium had a more even mix of the two types of papers. 

vii 
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This nuts-and-bolts emphasis was not by design, but is a reflection of what 
the authors themselves felt to be most interesting in their work. 

My hope for this book is to reach both novice and experienced paral
lel computational chemists. For the novice, Chapter 1 introduces the 
concepts and jargon of parallel computing. To round out this introduc
tion, novice parallel programmers should also read Chapters 2, 3, 9, and 
10. Chapters 2 and 3 provide an overview of the parallel ab initio pro
gram GAMESS and describe some of the large calculations it has made 
possible. Chapter 10 is a good introduction to how molecular dynamics 
codes can be simply parallelized. The chapter includes plenty of pseudo
code to make the discussion as clear as possible. Finally, Chapter 9 is an 
excellent description of the various algorithms used in parallel molecular 
dynamics. 

For the experienced parallel computational chemist, this book is 
packed with valuable information. Chapters discuss the latest trends in 
parallel programming tools, such as object-oriented programming 
(Chapters 4 and 6), tool command language (tel) (Chapter 7), and the 
global arrays (GA) package (Chapter 6). Other chapters include some of 
the latest algorithms, such as the parallel fast multipole approximation 
(Chapter 11), the force decomposition algorithm (Chapter 9), and the use 
of distributed shared memory in post-Hartree-Fock calculations (Chapter 
6). 

The chapters in this book give a good feel for the range of hardware 
used in parallel computational chemistry: from massively parallel single 
instruction-multiple data (SIMD) machines (Chapter 13) to cost-effective 
workstation clusters (Chapter 5). They also provide a well-rounded view 
of what it is like to work with parallel systems—including some of the 
frustrations (Chapter 8). 

In all, this book is a self-contained introduction to the state of the art 
in parallel computational chemistry. I can't claim that every important 
method is in here (notable omissions are Monte Carlo and density func
tional methods), but the most common parallel computational chemistry 
methods are here. 

T I M O T H Y G. M A T T S O N 
Intel Corporation 
Supercomputer Systems Division 
Mail Stop C06-09 
14924 Northwest Greenbrier Parkway 
Beaverton, OR 97006 

November 15, 1994 
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Chapter 1 

Parallel Computing 

Timothy G. Mattson 

Intel Corporation, Supercomputer Systems Division, Mail Stop C06-09, 
14924 Northwest Greenbrier Parkway, Beaverton, OR 97006 

Computational chemists place tremendous demands on their computers. From the 
thousands of atoms in molecular modeling to the hundreds of basis functions in 
quantum chemistry, chemists are among the most demanding of all supercomputer 
users. It is therefore not surprising that computational chemists consistently find 
themselves at the forefront of high performance computing. 

Over the last decade, the forefront of high performance computing has come to 
mean parallel computing: i.e. the use of many processors in unison to solve a single 
problem. These parallel computers not only provide the most computational power, 
they are also more cost-effective than traditional vector-based supercomputers. More 
cost effective, that is, in terms of hardware. When software costs are factored in, a 
different picture emerges. 

The software costs for parallel systems are excessive. The reason for this is simple: 
parallel programming is hard! On a traditional supercomputer, a compiler can look at 
C or Fortran code and find operations to compute on the system's vector units. Thus, 
these computers can be used with minimal additional programming. On the other hand, 
parallel computers need software that has been decomposed into relatively independent 
tasks. This decomposition is heavily dependent on an algorithm's structure and so 
complex that it is unlikely compilers will ever be able to do the job automatically. 
Therefore, to use parallel computers, one must write parallel programs. 

Even though the programming costs are great, computational chemistry applications 
have been slowly but surely moving onto parallel architectures. After many years of 
difficult programming, chemists can now find parallel software for just about every 
class of chemical computation. 

To understand these developments and perhaps get involved in bringing even more 
applications to parallel computers, it is worthwhile to step back and take a close look at 
parallel computing. That is the goal of this chapter. We will explore parallel 
architectures, parallel algorithms, and the ways parallel programmers evaluate the 
performance of parallel algorithms. Throughout the discussion, careful attention will be 
paid to the jargon of parallel computing so the reader can jump directly from this 
chapter into the literature of parallel computing. 

0097-6156/95/0592-0001$12.00A) 
© 1995 American Chemical Society 
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2 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y 

What is Parallel Computing? 

The term parallel computing refers to computing that uses multiple central processing 
units (CPU) to solve a single problem. The hardware that supports parallel computing 
goes under a number of names: multicomputer, parallel computer, cluster, 
multiprocessor, etc. Each of these names suggests a particular nuance of architecture. 
We won't worry about these details, however, and will use the term parallel computer 
to mean any system with multiple CPU's. We will refer to the individual processing 
units as the nodes of the parallel computer. 

There are many different ways to combine CPU's into a parallel computer. To keep 
track of these options, computer scientists organize parallel architectures in terms of 
instruction streams and data streams (1). Two cases have become everyday terms to 
the parallel programmer: 

1. Single Instruction, Multiple-Data (SIMD). 
2. Multiple-Instruction, Multiple Data (MIMD). 

A SIMD computer consists of multiple nodes working in lock-step from a single 
instruction stream. While this accurately describes some super-scalar and vector 
architectures, parallel programmers reserve the term SIMD for computers containing a 
very large number (thousands to tens of thousands) of simple processors with their own 
local memory. Since all of the processors are driven by a single instruction stream, the 
parallelism is expressed in terms of concurrent operations on distinct data elements. 

SIMD computing's single instruction stream makes the programmer's job easier; a 
belief that has driven much of the interest in the SIMD architecture. Using a single 
instruction stream, however, carries a price. Whenever a SIMD program contains 
conditional logic, some nodes execute while others remain idle. For example, 
depending on the data, the run-time for an IF-ELSE structure can be equal to the sum 
of the run-times for the individual IF and ELSE clauses. Hence, while the SIMD 
program may be easy to write, getting the most out of the computer may require 
complicated coding to eliminate conditional logic. 

The best example of a SIMD computer is the MP-2 computer from MasPar 
Computer Corporation. This machine has from 1024 to 16,384 32 bit processors each 
with its own memory. Al l of the processors work off a single instruction stream 
provided by a single array control unit. The MP-2 is tightly coupled to a front-end 
workstation. The programs are written in a data parallel dialect of a sequential language 
that has a rich set of array based operations (such as Fortran90) with sequential 
operations occurring on the front-end workstation and array operations occurring on 
the MP-2. If the programmer is not careful, data sloshing occurs meaning that excess 
data movement occurs between the MP-2 and the front-end workstation. 

MIMD computers are based on a more general parallel architecture with processing 
elements that have their own instruction and data streams. In most cases, a MIMD 
computer is built with microprocessor components developed for the PC and 
workstation markets. The huge volume of these markets fuels fiercely competitive 
R&D efforts that keep these standard components at the leading edge of performance. 
These same market forces keep component prices low allowing MIMD computers to 
easily hold the price performance lead in supercomputing. 

MIMD systems are divided into two categories: shared memory and distributed 
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1. M A T T S O N Parallel Computing 3 

memory. Good examples of shared memory MIMD computers are the systems 
marketed by Silicon Graphics Incorporated (SGI). These computers have multiple 
processors connected to a shared memory by a high speed bus. This gives the 
programmer a single address-space which simplifies programming because data is 
where it is needed when it is needed. On the other hand, a single address space 
complicates programming since processes can corrupt each other's data. To solve this 
problem, programmers place semaphores around critical data elements to enforce a safe 
order for memory references. 

Shared memory computers are usually limited to peak sizes of 16 to 32 nodes. This 
limitation exists because the bus connecting the processors to the shared memory 
saturates if too many nodes are added. To build computers with large numbers of nodes 
(a so called scalable system), the aggregate access rate to memory must increase as 
more nodes are added. Distributed memory computers provide a solution to this 
problem. 

As the name implies, distributed memory MIMD computers locate the memory with 
each processor. They may provide a shared memory programming model (T3D from 
Cray Research Inc.), but the underlying architecture uses multiple independent 
processors with their own local memory. These processors are connected by a 
communication network that supports passing messages between individual nodes 
(hence why these sometimes are called message passing architectures). The network 
connects the processors in a particular arrangement such as a mesh (Paragon and Delta 
Supercomputers from Intel Corporation), the fat tree (CM-5 from Thinking Machines 
Corp.) a hypercube (nCUBE 2 from nCUBE Corporation, iPSC/860 from Intel 
Corporations) or a hierarchy of crossbar switches (SP1 and SP2 from IBM). This 
arrangement of processors is called the computer's topology. 

Programmers used to pay a great deal of attention to a parallel computer's topology. 
Fortunately, most distributed memory MIMD systems now use sophisticated message 
routing mechanisms that let a processor communicate to any other processor on the 
same time scale. This is, of course, only an approximation and for performance tuning 
the detailed arrangement of processors can still be important. These are low-level 
optimizations, however, so most parallel programmers can safely ignore a computer's 
topology. 

A sub-class of distributed memory MIMD computers is workstation clusters. As the 
name implies, these parallel computers are built from a network of workstations. In 
many cases, ethernet-connected networks of desktop workstations can be used for 
impressive supercomputing off-hours when they are otherwise idle (see chapter 5). 
Workstation clusters can also be built specifically for parallel computing. In this case, 
sophisticated interconnection hardware based on fiber-optic networks (FDDI) or a high 
speed switch such as an A T M switch can be used (see chapter 11). The interest in this 
type of parallel computing has grown dramatically in the last five years as software 
(2,3) has become available to make these systems as easy to program as traditional 
parallel computers. 

The research described in this book was carried out on a wide range of parallel 
systems. Table I lists these systems along with the chapters where they appear. This 
table shows a predominance of systems from Intel Corp. This is due to the popularity 
of the distributed memory MIMD architecture and the fact that Intel has been building 
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1. M A T T S O N Parallel Computing 5 

this type of computer longer than other vendors (with the possible exception of nCUBE 
Corp.). The second most common system in this book is workstation clusters. Clusters 
do not provide the ultimate performance, but they are ubiquitous and a good source of 
affordable supercomputing. 

For many years, a SIMD-vs.-MIMD debate raged within the parallel computing 
community. There are still echoes of this debate, but essentially its over and the 
MIMD-camp won. This can be seen by the lack of SIMD systems in Table I, but more 
importantly by the poor sales of SIMD computers in the marketplace. These systems 
were supposed to be easy to program, but it turned out that optimizing SIMD 
programs was very difficult At the time this is being written, only one manufacturer 
continues to produce general purpose supercomputers based on the SIMD architecture, 
making MIMD systems the overwhelming majority. Hence, while the vocabulary and 
general concepts discussed in the rest of this chapter apply to both architectures, the 
bulk of this discussion is specialized to MIMD computers. To learn more about the use 
of SIMD computers, see chapter 13. 

How to Program Parallel Computers 

Writing software is a complex undertaking regardless of the target system. If that target 
computer is parallel, however, it quickly becomes a truly daunting task. This difficulty 
has hindered the adoption of parallel computing for mainstream supercomputing. 

To help understand parallel programming, lets first take a look at programming in 
general. Programmers view a computer in terms of a high level abstraction called a 
programming model. This frees them from low-level, system dependent details and lets 
them write portable software. For single processor computers, there is a common 
programming model that virtually all programmers use: the von Neumann model. The 
von Neumann model views a computer as a single processor with a single stream of 
instructions that operates on a single memory. Processors and the memory sub-systems 
vary widely from one computer to another. These details can be neglected by the 
programmer (except for final performance tuning), letting a program coded to the von 
Neumann model run on any single processor computer. 

Unfortunately, parallel programmers have not converged on a single programming 
model. This complicates a programmer's job forcing him or her to choose from a range 
of programming models. In addition, the lack of a universal programming model has 
diluted the efforts of programming tool developers resulting in relatively immature 
tools for parallel computing. The result is that the parallel programmer's difficult job is 
made even harder. 

Of the many programming models for MIMD computers, most fall into one of two 
camps: 

1. Task parallelism 
2. Data Parallelism 

In task parallelism, parallelism is expressed by mapping different actions onto different 
nodes. For example, the Strand parallel programming language (4) supports 
concurrency by executing different routines on different nodes. Another example of 
task parallelism is pipeline algorithms (see chapter 7). These algorithms consist of an 
ordered set of tasks (called stages) that execute in parallel. Input data enters the 
pipeline at one end, and after working through each of the stages, the final result comes 
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6 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y 

out the other end. Once the pipeline is full, the algorithm proceeds with concurrency 
equal to the number of stages (the depth of the pipeline). In both examples, it is the 
tasks to be executed in parallel that guides the algorithm's design. 

Algorithms using data parallelism are designed in terms of the data and how it is 
distributed among the nodes. At one extreme are pure data parallel, SIMD programs 
where every node applies the same stream of instructions to its own data. The data 
parallel model is far more general than the SIMD case, however, and includes programs 
with very different actions occurring on each node. 

The most common data parallel programming model is called SPMD or Single 
Program Multiple Data. In this case, the same program is loaded onto each of the 
parallel computer's nodes. This simplification helps the programmer tremendously 
because only a single program needs to be written. Unlike the SIMD case, however, 
different operations execute concurrently from one node to another due to conditional 
logic within the program. 

Programming models are important - especially to computer scientists trying to find 
more humane ways to program parallel computers. Application programmers, however, 
are more concerned with the implementation of a programming model; i.e. the 
programming environment. Since the data parallel model dominates parallel 
computing, programming environments supporting the data parallel model are by far 
the most common. These programming environments take a number of forms, but most 
share a basic structure. We refer to this basic structure as the coordination model. In 
the coordination model, a parallel program is seen as a number of sequential processes 
with their own local memories that coordinate their actions at specific points in the 
program. 

For example, coordination libraries such as P V M (5), TCGMSG (6), or MPI (7) 
use the exchange of discrete messages to coordinate processes. The bulk of the 
program is traditional C or Fortran with library function calls to exchange messages, 
synchronize processes, or to spawn new processes. Because of their focus on message 
passing, these systems are frequently called message passing libraries. The term is too 
restrictive, however, since these systems do far more than exchange messages. 

A more sophisticated approach uses compiler support for coordination through a 
coordination language. Coordination languages separate computation (which remains 
in the domain of the sequential language) from parallelism (which remains strictly 
within the coordination language). There are several advantages to getting the compiler 
involved with coordination. The compiler can detect inconsistencies in the coordination 
operations making initial debugging much easier. In addition, the coordination 
language's high level view of the parallel computer provides additional algorithmic 
flexibility. For example, the best known coordination language is Linda (8). In Linda, 
coordination takes place through a small set of operations that manipulate objects 
within a distinct shared memory (for more information about Linda, see chapters 5 and 
10). The shared memory supports algorithms that use high level constructs such as 
distributed data structures and anonymous communication (i.e. the sender and/or 
receiver don't know the identity of one another). Linda isn't the only coordination 
language. Several others are available including Fortran-M (9) and PFortran (10). 

While less commonly used, programming environments that do not use the 
coordination model are available. These programming environments are based on 
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1. M A T T S O N Parallel Computing 7 

formal models of the parallel computer resulting in inherently parallel programming 
languages. For example, there are parallel programming environments that use 
concurrent logic programming (Strand (4)), functional programming (SISAL (11)), and 
SIMD-style data parallel programming (HPF (12)). Each of these systems are based on 
formal models of the parallel computer and have distinct advantages. To use these 
environments, however, a programmer must learn a new language. Programmers are 
reluctant to learn new languages, so these inherently parallel languages have seen 
insignificant usage compared to programming environments based on the coordination 
model. 

Which programming environment is the best? This question has been addressed for 
some systems (13,14), but in the final analysis, a general answer does not exist. Every 
programmer must choose for themselves based on the sorts of algorithms that will be 
implemented and the parallel systems that the software will run on. 

Algorithms for Parallel Computing 

The heart of any program is its algorithms. The parallel programmer must deal with 
two levels of algorithms. First, each node runs a local program, so all the challenges of 
sequential algorithms must be faced. Second, there are a myriad of issues unique to 
parallel computing such as balancing the work load among all the nodes and making 
sure that data is where it is needed when it is needed. Because of these two levels of 
complexity, parallel algorithms are among the most challenging of all algorithms. 
Complicating matters further, many different parallel algorithms are available. It is easy 
for parallel programmers - both novice and expert - to become overwhelmed. 

Fortunately, most parallel algorithms can be more easily understood by mapping 
them into one or more of three simple algorithm classes. We will call these algorithm 
classes and the code constructs that implement them, algorithmic motifs. The three 
most common algorithmic motifs are: 

1. Loop Splitting 
2. Domain Decomposition 
3. Master/worker or the task queue 

In addition to the algorithmic motif, the parallel programmer must understand an 
algorithm's granularity. Granularity refers to the ratio of the time spent computing to 
the time spent communicating (or synchronizing). If an algorithm must communicate 
after a small amount of computation, it is called fine grained. If a great deal of 
computation occurs for each communication, the algorithm is said to be coarse 
grained. 

Granularity is also used to describe the number of simultaneous processes within a 
program. If an algorithm can use only a small number of simultaneous processes, the 
program is called coarse grained: even if it requires a great amount of communication 
relative to computation. Usually a program is coarse or fine grained under both 
definitions of granularity, but this isn't always the case. 

It is important to understand the granularity of an algorithm and make sure it is 
consistent with the granularity of the hardware. For example, if the hardware 
communication rate is much slower than the computation rate (such as an ethernet 
connected workstation cluster), then fine grained algorithms will not run well. Of 
course, communication capacity can be under utilized so coarse grained algorithms 
work well on fine grained parallel computers. 
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8 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y 

Notice that it is the granularity, not the amount of communication, that governs the 
effectiveness of an algorithm on a particular parallel computer. For example, some 
parallel programmers assume that a collection of workstations on a local area network 
can not be used with algorithms that require significant communication. This isn't true! 
If computation grows faster than communication as a problem's size increases, then it is 
possible to increase a problem's size so its granularity matches the coarse granularity of 
a workstation cluster. Such large problem sizes may not be interesting, but when they 
are, it is possible to do supercomputing on a workstation cluster - even if substantial 
communication is required. Hence, it isn't the amount of communication but the ratio of 
computation to communication (granularity) that matters. 

We will now look at each of these algorithmic motifs in detail. For each case, we 
will describe what the motif is, when it can be used, and finally, how it is used to code a 
parallel program. 

Loop Splitting. The parallelism in a loop splitting algorithm comes from assigning 
loop iterations to different processors. It is almost always used within a replicated data 
SPMD program. This means that the same program is loaded onto each node of the 
parallel computer and that key data structures are replicated on each node. At the 
conclusion of the split loops, a single copy of this data is rebuilt on each node. It is this 
reconstruction that represents the communication phase of the parallel algorithm. Data 
replication is a powerful technique and is a simple way to assure that the right data is 
located where it is needed when it is needed. 

The loop splitting algorithm can be used whenever: 
1. The bulk of a program's run time is spent in a few loops. 
2. The iterations of the split loops are independent and can 

execute in any order. 
3. The replicated data fits in each node's memory. 
4. The amount of data that must be replicated is small enough so 

communication doesn't overwhelm computation. 
A simple example will clarify the loop splitting algorithmic motif and show how it is 
used. Consider the following code fragment: 

do i = 0, NUMBER_OF_ITERATIONS 
call WORK() 

end do 
If the operations carried out within WORK() are independent of any previous loop 
iterations (i.e. there are no loop carried dependencies) this code can be parallelized with 
loop splitting. First, the same program is loaded onto each node of the parallel 
computer (the SPMD program structure). Next, logic is added to replicate any key data 
structures manipulated in this loop. The loop iterations are then spread out among the 
nodes in some manner. A common trick is to use a cyclic distribution of the loop 
iterations: 

do I = ID, NUMBER_OF_ITERATIONS, N U M . N O D E S 
call WORK() 

end do 
call GLOBAL_COMBINE() 
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1. M A T T S O N Parallel Computing 9 

where we assume that each of the NUM_NODES processors has a unique node ID 
ranging from 0 to NUM_NODES-L The cyclic distribution assigns loop iterations as if 
a deck of cards were being dealt to the nodes with each node getting iterations ID, 
ED+NUM_NODES, ID+2*NUM_NODES, etc. As the calculation proceeds on each 
node, it fills in a scattered subset of any replicated data structures. When the loop is 
finished on each node, this scattered data is recombined into a globally consistent data 
structure with a call to a GLOB AL_COMBINE() operation. This operation uses all-to-
all communication, i.e. each node contributes its subset of the data to each of the other 
nodes. Since all nodes must participate, GLOBAL_COMBINE() operations implicitly 
invoke a synchronization barrier - i.e. a point in a parallel program where each node 
waits until all nodes have arrived. 

Al l of the communication in the loop splitting algorithm occurs in the 
GLOBAL_COMBINE operation. Of the many GLOBAL_COMBINE() operations, the 
most common is the global summation. The starting point for a global summation is 
distinct (though same sized) vectors on each node. The corresponding elements of the 
vector are summed together leading to a single vector containing the summed elements. 
The operation concludes by replicating the vector on each of the nodes of the parallel 
computer using a broadcast or in the most clever algorithms, the vectors are 
manipulated so the same reduced vector is produced in parallel on each of the nodes 
(15,18). While it is easy to describe a global combine operation, writing one that works 
efficiently and correctly is difficult Fortunately, these operations are included in most 
parallel programming environments. For more information about global summations 
including code for a primitive method, see chapter 10. 

The cyclic distribution is not the only way to assign loop iterations. On some 
architectures, reuse of data from the cache is maximized by having a blocked 
distribution with contiguous blocks of loop indices assigned to each node. One way to 
code this is to use arrays indexed by the node ID to indicate the first and last loop 
indices for each node. For example: 

do I = FIRST(ID), LAST(ID) 
call WORK() 

end do 
call GLOBAL_COMBINE() 

The disadvantage of the blocked distribution is its potential to produce uneven amounts 
of computing among the nodes. If different iterations take different amounts of time, 
then processors can run out of work at different times. The cyclic distribution avoids 
this problem in a statistical manner due to the scattering of the loop iterations among 
the nodes. A program that uses a blocked distribution, however, may need to 
periodically recompute the FIRST and LAST arrays to keep all of the processors 
evenly loaded (dynamic load balancing). 

Any algorithm that depends on a replicated data approach suffers from 
communication that scales poorly and excess memory utilization. This limits the 
scalability of an algorithm (i.e. the number of nodes that can be effectively used in the 
computation). These are serious weaknesses for a parallel algorithm, yet loop spHtting 
is by far the most common parallel algorithmic motif used by computational chemists. 
Why is this the case? 
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10 P A R A L L E L C O M P U T I N G I N C O M P U T A T I O N A L C H E M I S T R Y 

Loop splitting is so common for one reason: simplicity. Given a complex program 
that has evolved over many years (and many programmers) the loop splitting algorithm 
lets one create a parallel program with minimum changes to the original code. It also 
lets one parallelize a program without understanding how its data structures are 
manipulated. Eventually, as programs are written from scratch for parallel computers, 
loop splitting algorithms will be used less often. But for the immediate future, 
sequential programs must be ported to parallel platforms, and the loop splitting 
algorithms will continue to dominate. For examples of the loop splitting motif, see 
chapters 2, 8, 9, and 10 as well as the classic paper on the parallelization of C H A R M M 
(18). 

Domain Decomposition. The central organizing principle of a domain decomposition 
(or geometric decomposition) algorithm is the way data is broken down into smaller 
units (the data decomposition). Once this decomposition is carried out, a program 
operates locally on its chunk of the data. Communication occurs at the boundaries of 
the local domains and is usually restricted to neighboring processors. This is the 
inherent advantage of these methods. By eliminating global communication, domain 
decomposition methods can use more nodes. Furthermore, these algorithms use 
memory more efficiently since they only need space for a local domain - not an entire 
copy of the global data. 

The loops in domain decomposition programs run over local indices so these 
programs can look like block decomposition, loop splitting programs. They are quite 
different, however, since the domain decomposition programs must decompose the 
data into local blocks and communicate to selected nodes rather than globally. 

Domain decomposition algorithms can be used whenever computations are localized 
over well defined blocks of data. Another factor to look for when choosing a domain 
decomposition algorithm is that the communication required to update a local data 
block is restricted to a small number of nearby processors. 

Good examples of the domain decomposition algorithm are spatial decomposition 
algorithms for molecular dynamics (see chapter 9). For these algorithms, 3D space is 
divided into distinct regions which are mapped onto the nodes of the parallel computer. 
Each node updates the forces and coordinates for atoms in its region. Communication 
arises from two sources. First, to compute the forces for atoms near the domain's edge, 
atomic data is required from the neighboring domains. Second, atoms must be sent to 
neighboring processors when they move across a domain boundary. 

Domain decomposition algorithms are significantly more complicated than loop 
splitting algorithms. They are usually superior algorithms in terms of effective 
utilization of the parallel computer, so they should be used whenever the extra effort is 
justified (e.g. library routines such as parallel eigensolvers) or when a program is 
written from scratch for a parallel computer. 

An important trend in domain decomposition algorithms is to simplify the data 
decomposition through distributed shared memory. This usually is implemented as a 
software package that provides a restricted form of shared memory regardless of the 
underlying hardware's memory organization. An important example of this type of 
programming can be found in chapter 6 where the GA package running on top of 
TCGMSG is described. 
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1. M A T T S O N Parallel Computing 11 

Master-worker. Master-worker (or task queue) algorithms distribute independent 
tasks among the nodes of a parallel computer. While the other two motifs are 
expressions of a data parallel programming model, master worker algorithms are 
examples of task parallelism. 

Master-worker algorithms are useful when a program consists of a large number of 
completely independent tasks. These sorts of problems are officially designated as 
embarrassingly parallel (16) since the parallelism is so simple to extract. For reasons 
that will become clear in the following paragraphs, there are such striking advantages 
to the master-worker algorithmic motif, it should be used whenever possible. 

Logically, a master-worker program consists of two types of processes - a master 
and a worker. The master process manages the computation by: 

1. Setting up the computation. 
2. Creating and managing a collection of tasks (the task queue). 
3. Consuming results. 

The worker process contains some type of infinite loop within which it: 
1. Grabs a task and tests for termination. 
2. Carries out the indicated computation. 
3. Returns the result to the master. 

Termination is indicated in a number of ways. One approach is for the master or 
some worker to detect the last task and then create a poison pill. The poison pill is a 
special task that tells all the other workers to terminate. Another approach is for each 
task to be sequentially numbered and for each worker to check when that number of 
tasks has been met (or exceeded). 

There are many variations of the basic master-worker motif. If consuming results is 
trivial or easily delayed to the end of the computation, it is quite simple to modify the 
master to turn into a worker after it sets up the task queue. In another variation, the 
generation of tasks can be spread among the workers. Finally, when the master is not 
required to do anything special with either the creation of tasks or consumption of 
results, it is possible to completely eliminate the master and replace it by a mechanism 
to manage a queue of tasks. For example, in the programming environment TCGMSG 
(6) a special process is provided that maintains a globally shared counter. One can then 
create an SPMD program which uses the global counter to maintain the task queue. An 
example of this technique can be found in chapters 2 and 6. 

There are a number of advantages associated with master-worker algorithms. First, 
they are very easy to code. A worker can be simply created from an original sequential 
program by just adding logic to interact with the task queue. Ease of programming is 
an important advantage. Even without this advantage, there is a compelling reason to 
use this algorithmic motif when it is possible to do so. A master-worker program can 
be constructed such that it automatically balances the load among the nodes of the 
parallel computer. 

Lets consider a worse case scenario. Consider a parallel computer for which each 
node has a different speed of computation. Furthermore, let the computational 
requirements of each task vary significantly and unpredictably. In this case, any static 
distribution of tasks is guaranteed to produce a poor load balance. A master-worker 
algorithm, deals quite easily with this situation. The workers grab tasks and compute 
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12 P A R A L L E L C O M P U T I N G IN C O M P U T A T I O N A L C H E M I S T R Y 

them at their own pace. A faster node will naturally grab more tasks and therefore 
balance the load. Furthermore, nodes that happen to grab more complex tasks will take 
more time and access the task-queue less frequently. Once again, the number of tasks is 
naturally reduced for these more heavily loaded nodes. 

Algorithms with these characteristics automatically provide dynamic load 
balancing. There are a couple conditions that must be met by the task queue in order 
for this motif to be most effective. First, the number of tasks must be greater than the 
number of nodes — preferably much greater. This holds because the amount of 
available parallelism is given by the number of tasks. Hence, once the tasks are all 
assigned, no further parallelism is available to the system. 

The second condition for a fully optimum master-worker algorithm is for the longest 
tasks to be handled first. If the long tasks are not handled until late in the computation, 
a single process can be stuck working on a long task while no other tasks remain for 
the other nodes. By handling the long tasks first, the odds are greatest that work will be 
available for the other nodes during computation on the long tasks. 

Master-worker algorithms are not without their shortcomings. As mentioned 
earlier, they really only map cleanly onto embarrassingly parallel problems. More 
fundamentally, the master-worker algorithm ignores the underlying system topology. 
While it is good to de-emphasize topology when first writing a parallel program, it can 
be vital to include topology during final code optimization. In some cases significant 
performance benefits can result by controlling which tasks are mapped onto which 
nodes - a level of control that master-worker algorithms do not easily permit. 

Even with these shortcoming, however, the master-worker algorithm is extremely 
useful. Computational chemists are quite fortunate that many important algorithms can 
be mapped onto the master worker algorithmic motif. Most problems involving 
stochastic optimization (e.g. DGEOM (17)) can be mapped onto this algorithmic motif. 

How is Performance Measured? 

Parallel computers are used to achieve greater performance, so any discussion of 
parallel computing eventually must address the performance of the system. 

There are several standard measures of a parallel algorithm's performance. Before 
describing these, consider the characteristics of a parallel application that lead to high 
performance. To most effectively extract performance from a parallel computer, the 
computational work (or load) must be evenly distributed about the nodes of the parallel 
computer. We use the term load balance to describe this situation. Algorithms with 
poor load balancing result in computations where some nodes are busy while others 
remain idle. Static load balancing is used when the load is computed once and remains 
fixed as the calculation proceeds. Dynamic load balancing occurs when the load is 
changed in the course of the calculation to keep all nodes equally occupied. 

Even when the load is perfectly balanced, the performance of a parallel program will 
be poor if too much time is spent communicating rather than doing useful computation. 
This is an important effect that plays a key role in limiting how many nodes can be 
used. To see this point, consider the distribution of a fixed amount of work among the 
nodes of a parallel computer. As more nodes are used, less work is available for each 
node. As more nodes are added, however, communication usually remains either fixed 
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1. M A T T S O N Parallel Computing 13 

or in some cases increases. Eventually, more time is spent communicating than 
computing and the performance suffers. 

With these effects in mind, we can look at how performance of a parallel computer 
is measured. The most fundamental measurement is speedup. Speedup is the multiplier 
indicating how many times faster the parallel program is than the sequential program. 
For example, if the program took T Seq seconds on one node and T(N) seconds on Ν 
nodes, the speedup is the ratio: 

S " T ( N ) 
When the speedup equals the number of nodes in the parallel computer, the speedup is 
said to be perfectly linear. 

From the speedup, we can derive an important relationship describing the maximum 
performance available from a parallel algorithm. This relation is called Amdahl's law. 
Amdahl's law holds because parallel algorithms almost always include work that can 
only take place sequentially. From this sequential fraction, Amdahl's law provides a 
maximum possible speedup. For example, consider the parallelization of a sequential 
program. If we define the following variables: 

Tseq = time for the sequential program 
α = fraction of Tseq dedicated to inherently sequential operations 
γ = fraction of Tseq dedicated to parallel operations 
Smax = maximum possible speedup 
Ρ = Number of nodes 

the best possible speedup for any number of processors is: 
s =

 T seq = 1 
TseqY 1 - α 

c c T S e q + — a + - p -

In the limit of infinite number of processors, this expression becomes: 

kmax- α 

This is a serious constraint and was used for years to argue against parallel processing. 
If the sequential fraction is 10%, the best possible speedup is 10. Even a rather extreme 
case of a 99% parallel program gives a best possible speedup of only 100. 

Amdahl's law is real and must always be considered when trying to evaluate the 
quality of a parallel program. However, this pessimistic view misses one key point. As 
the number of available processors grows, the size of the problem can grow as well. In 
other words, parallel computers provide speed, but they also provide the memory 
capacity to support larger problems. 

Another way to describe the performance of a parallel program is the efficiency. 
Qualitatively, efficiency measures how effectively the resources of the multiprocessor 
system are utilized. Quantitative definitions of efficiency generally take the form: 

Ρ tpar 
where Ρ is the number of nodes, tref is some sequential reference time, and tpar the 
parallel time. The most rigorous definition of efficiency sets tref to the execution time 
for the best sequential algorithm corresponding to the parallel algorithm under study. 
When analyzing parallel programs, "best" sequential algorithms are not always 
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available, and it is common to use the runtime for the parallel program on a single node 
as the reference time. This can inflate the efficiency since managing the parallel 
computation always (even when executing on one node) incurs some overhead. 

Conclusion 

Parallel programming is a complex art. The parallel programmer must deal with all of 
the problems of sequential programming, as well as a host of new problems unique to 
parallel computing. These uniquely parallel problems are complex and can be very 
difficult to master. 

Parallel computing, however, is no different than many subjects and follows an "80-
20 rule". In other words, 80% of the understanding comes from 20% of the knowledge. 
The problem is to find that key 20%; a problem this chapter has tackled and hopefully 
solved. 

We close this chapter by emphasizing four key simplifications for the person just 
entering the field of parallel computing. First, view parallel computers in terms of a 
spectrum of MIMD systems distinguished by the granularity of the hardware. This does 
omit some architectures such as SIMD computers, but these systems are becoming 
increasingly rare. A MIMD spectrum outlook helps one write more effective code by 
putting architecture dependent details such as topology in their place; i.e. as a final 
optimization and not as the key focus of a programming effort 

Second, one should pick a portable programming environment they are comfortable 
with and stick with it. This environment should be selected based on ease of use and 
effectiveness for the algorithms you are interested in. Performance differences are 
usually not significant among the common programming environments (14). 

Third, when faced with a new parallel algorithm, try and map it into some 
combination of the algorithmic motifs described in this chapter: 

1. Loop Splitting. 
2. Master Worker (Task Queue). 
3. Domain Decomposition. 

It is not always possible to clearly map an algorithm into one of these motifs (for 
example, see chapters 4 and 6), but the motifs can help organize your reasoning about 
the algorithm. 

Finally, when thinking about a parallel program, evaluate your observed 
performance in terms of Amdahl's law. If the load balancing is right and the problem 
size is large enough, your program should follow the speedup curves given by Amdahl's 
law. If your performance is than that predicted by Amdahl law, the load balancing is 
wrong or the program's sequential fraction changes unfavorably as more nodes are 
included in the computation. 

Even with these four simplifications, parallel computing can be overwhelming. It is 
worth the effort, though, since chemistry stands to gain so much from parallel 
computing. 

Numerous trademarfa appear in this chapter. In each case, these trademarks are 
the property of their owners. 
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Chapter 2 

Parallel Implementation of the Electronic 
Structure Code GAMESS 

Theresa L. Windus1, Michael W. Schmidt2, and Mark S. Gordon2 

1Department of Chemistry, Northwestern University, 
Evanston, IL 60208-3113 

2Department of Chemistry, Iowa State University, Ames, IA 50101 

This paper outlines various tools and techniques for the parallelization 
of quantum chemistry codes; in particular, for the electronic structure 
code GAMESS. A general overview of the parallel capabilities of 
GAMESS are also presented. 

The parallelization of quantum chemistry codes has become a very 
active area of research over the last decade(1,2,3,4). Until recently, most 
of this research has dealt with self-consistent field (SCF) theory(1). 
However, in the last few years parallel implementations of post-SCF 
methods have been presented (2). Most of the post-SCF methods and 
analytic Hessians for SCF wavefunctions face the substantial problem 
of parallelizing the atomic orbital (AO) integral to molecular orbital 
(MO) integral transformation (3). 

The objective of this paper is to provide general information 
about the parallel implementation of GAMESS. The following sections 
are presented in this paper: (A) a brief overview of the functionality of 
the ab initio code GAMESS (General Atomic and Molecular Electronic 
Structure System); (B) a short discussion of the model, software, and 
general ideas used to parallelize GAMESS; (C) specificss concerning the 
parallelization of the SCF; (D) discussion concerning the AO to MO 
integral transformation; (E) the transformation as applied to multi-
configuration SCF (MCSCF); (F) the transformation as applied to 
analytic Hessians; (G) a brief overview of the parallel MP2 code; and 
(H) conclusions and future areas of research will be discussed. 

A. Brief overview of GAMESS 

GAMESS is a general electronic structure code for the determination of energies, 
stationary states, frequencies and various other atomic and molecular properties(ia). 
The wavefunctions that are available in GAMESS are given in Table I, together with 
information about the availability of analytic determination of gradients, hessians 

0097-6156/95/0592-̂ )016$12.00/0 
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2. W I N D U S E T A L . Parallel Implementation of GAMESS 17 

(energy second derivatives with respect to the nuclear coordinates), second order 
Moller-Plesset theory (MP2)(5), and configuration interaction (CI)(<5). 

Where analytical gradients are available, GAMESS can be used to calculate 
stationary points (structural minima and maxima), intrinsic reaction coordinates (IRCs) 
between transition states and minima, and numerical Hessians. Complete details of 
GAMESS can be found in reference la. 

Table I: Tabulated overview of GAMESS 

Energy Gradient(a) Hessian(a) ΜΡ2 CI Semi(b) 

RHF(c) χ χ χ χ χ χ 
UHF(d) χ χ χ χ 
ROHF(e) χ χ χ χ χ χ 
GVB(f) χ χ χ χ 
MCSCF(g) χ χ χ 

a. Refers to analytic evaluation. Numerical Hessians are available whenever analytic 
gradients are available. 
b. Semi-empirical wavefunctions: A M I , MNDO, PM3(7). Energies and analytic 
gradients are available. 
c. Restricted Hartree-Fock, ref (8). 
d. Unrestricted Hartree-Fock, ref (9). 
e. Restricted open-shell Hartree-Fock, ref (10). 
f. Generalized valence bond, ref (77). 
g. Multi-configuration SCF, ref (72). 

B. Model, communication software, and general ideas 

The single-program, multi-data (SPMD) model is used in the parallelization of 
GAMESS with each node executing essentially the same code. This model has many 
advantages for a large FORTRAN program (over 120,000 lines of code). One is that 
only one code needs to be maintained. Another advantage is that it is relatively easy to 
parallelize new sections of the code, since only one code needs to be examined for 
parallel content. In the early stages of the parallelization of GAMESS, only certain 
portions of the code were allowed to run in parallel. An error message would be given 
to a user who tried to run parallel jobs on sections of the code that were not parallelized 
and then the job would abort. As furthur portions of the code were parallelized, the error 
messages were removed. 

An important consideration when parallelizing any code is which communication 
software package to use. Several criteria had to be met for GAMESS. First, portable 
software was needed since GAMESS executes on many different platforms. Second, 
software that required only a small learning curve was needed in order to facilitate the 
process, since the objective is to parallelize quantum chemistry codes, not necessarily 
to become experts in parallel communication. Third, the communication software had 
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to work with quantum chemistry codes (i.e. usable with FORTRAN). Finally, the 
software must be either free or very cheap so that any user could obtain it. Several 
software packages were available at the beginning of our research, but the one that fit 
the above criteria best was the TCGMSG package of Harrison (75). This code is 
portable across several different platforms including UNIX workstations connected by 
Ethernet, distributed memory machines such as the Intel Paragon and shared memory 
machines such as the Alliant. Further, only about a dozen functions and subroutines are 
needed to perform the majority of the communications. Global functions are available 
to perform many of the operations, such as global summations of vectors and 
broadcasting a message from one node to all nodes. TCGMSG was specifically written 
to work with chemistry codes. And finally, TCGMSG is available via anonymous ftp, 
and therefore it is available to essentially all interested users. 

Once the communication software and the model of parallelization are chosen, the 
"real" parallelization work can begin. First, the program should be relatively up to date 
before it is parallelized. It is not, in general, practical or useful to parallelize obsolete 
or very slow code. Also, direct methods tend to be easier to parallelize (at least at the 
first implementation level) than disk based methods since parallel disk I/O generally 
takes extra work to set up. Because of this, a direct method was introduced into the SCF 
code before the parallelization was initiated. Before development of the parallel 
MCSCF code, a faster transformation with direct capabilities (14b) was implemented. 

One general consideration for any parallel code, is how I/O will be done. In 
GAMESS, only one node, the "master" node, reads input from the input deck and sends 
results to the output file. This requires that the master node "broadcast" input 
information to the other nodes. So, as an initial step in the parallelization of GAMESS, 
general I/O (as opposed to integral files, etc.) was made to execute only on the master 
for the entire code. This step actually consumed quite a bit of time, but in the end it 
proved to be very useful to have all of this work done at one time instead of working on 
it in small portions. 

At this point, it is important to understand how the serial code actually works and 
what the computational bottlenecks are. Others(7) have identified the computational 
bottlenecks for SCF energies and gradients to be the computation of the two-electron 
integrals and two-electron gradient integrals, respectively. These investigators have 
developed methods for the parallelization of these parts of the code. In the end, of 
course, one wants as much of the code to run in parallel as possible (i.e., consider 
Amdahl's Law), but it is useful to attack the computational bottlenecks first. As part of 
the understanding of the serial code, it was useful to outline the actual subroutine calls 
made in GAMESS. By systematically examining the code, it was relatively easy to see 
which parts of the code could be parallelized. For example, even though it is not a 
computational bottleneck, the one- electron integrals can be parallelized in a manner 
similar to the two-electron integrals in very little programmer time. The actual 
parallelization of the SCF code is briefly outlined later in this paper. 

During the parallelization process, it became apparent that at least two different 
methods of load balancing would be needed to obtain "good" efficiencies across many 
different platforms. The two methods used throughout GAMESS are called LOOP and 
N X T V A L load balancing. LOOP balancing is a static method that distributes the work 
by allowing each node to compute every mth block of work and skip the rest, resulting 
in an even distribution of many small pieces of work. This type of load balancing works 
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2. W I N D U S E T A L . Parallel Implementation of GAMESS 19 

best when the processors are of the same speed and have the same work load. The other 
type of load balancing, N X T V A L , is a dynamic algorithm using a shared counter which 
is managed by TCGMSG. This algorithm has each node send a message to the counter 
to get a new piece of work when it has finished its current work. The pieces of work 
must be of a relatively large size to overcome the cost of communicating with the shared 
counter. This algorithm works best when the processors are not of the same speed or 
do not have the sam work load. 

During the parallelization process, several concepts were useful. One of these is 
the idea of global broadcast. For a global broadcast, one node has information that the 
rest of the nodes needs. This is the concept used when the "master" node sends input 
information to the other nodes. However, it can also be useful i f one node performs a 
part of the calculation that the others do not and needs to broadcast the information to 
the other nodes. So, i f one part of the calculation is found to operate more efficiently 
on one node than on several nodes (perhaps because the amount of communication 
would be greater than the amount of computation), one node can perform the calculation 
and broadcast the results to the other nodes. By using global communications in the 
code, the implementor does not need to worry about point to point communication, 
because the function supplied by the communication software (TCGMSG in this case) 
handles that for each type of hardware. Point to point communication may be needed 
in some cases, but in GAMESS, only global broadcasts are used. 

Another important concept is the use of global summations. For example, in the 
current implementation of parallel SCF, each node calculates a partial contribution to 
the Fock matrix and then a global summation is performed. After the global summation, 
each node has the complete Fock matrix. An important point to remember is that each 
node must zero out the Fock matrix before it calculates its contribution, because the 
entire Fock matrix is summed. In other words, the global summation routine essentially 
gets the entire Fock matrix from each node, sums the pieces of the Fock matrix, and 
sends the result to each node. Related to the initial zeroing of matrices, occasionally 
vectors should be scaled before they are summed together. An example of this is in the 
gradient code. The one-electron gradient is calculated in parallel, globally summed, and 
written out to disk. The last step is performed for restart capabilities. When the two-
electron gradient contribution is calculated, first the one-electron gradient is read from 
disk and the two-electron contributions are added. Since the one-electron gradient is 
completely self-contained, it must be divided by the number of processors so that the 
final result after the global summation of the two-electron gradient terms (which are 
calculated in parallel) is correct. Again, global summations are used wherever possible, 
instead of point to point communication, under the assumption that the global 
summations will be optimized by the communication software. (As will be seen in the 
MCSCF section, sparse vectors and matrices should NOT be globally summed to avoid 
wasting bandwidth.) 

Another useful concept comes into play when debugging parallel code. While 
parallel debuggers are available, they are generally hard to use and can give misleading 
information. Debugging parallel code can be quite difficult, because the condition that 
results in an error is not always reproducable. However, when an error occurs 
frequently, a more systematic search for the error can be undertaken. We have found 
that flushing output for all the nodes and then aborting the job is a useful way to 
determine where the job is going wrong. This must be done at several places in the 
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code. A place where everything is performing correctly needs to be identified (this is 
not necessarily as easy as it sounds). Then, a location where the error has already 
occured must be found. Then, it is a matter of printing out information from all of the 
nodes in between the two points and moving the abort as far down into the code as 
possible before detecting the error. The abort is very important, since it stops all activity 
of all of the nodes and can help to determine which nodes are failing where. 

Another important tool used in the parallelization of GAMESS was stub routines. 
When the code is run sequentially, these stub routines are linked to the code instead of 
T C G M S G producing a serial version. However, there are some machines that 
T C G M S G has not yet been ported to or that have native functions identical to or 
comparable to the TCGMSG calls. Instead of porting TCGMSG to this machine, the 
appropriate calls were put into the stub routines, which then function as a translator 
betweeen TCGMSG and the native system calls. This isolates the machine spécifie code 
into only one source module that needs to be modified for a machine for which 
TCGMSG is unavailable or less efficient. 

Finally, it should be noted that the approach described in the following paragraphs 
has advantages and disadvantages. It is likely that the SCF part of the code can be made 
to scale very well for large numbers of processors, as long as the size of the problem is 
scaled accordingly. At present the scalability of the analytic hessian and MCSCF codes 
is probably more limited, but even here there is a great benefit to users who have several 
workstations on which to run the parallel code. In addition, there are clear paths to 
improving the scalability of at least the analytic hessian code, and this is in progress. 
Since we have chosen to replicate the entire code on all nodes, each node must have 
sufficient memory to hold the larger executable. 

C. SCF Parallelization 

The specific details of the SCF code are given in reference la. However, a general 
overview will be given here. The implementation of parallel SCF in GAMESS assumes 
that the Fock matrix and the density matrix are replicated on each of the nodes, instead 
of being distributed across the nodes. This limits the number of basis functions to 
around 400 on machines (such as the Intel Delta) with only 16 M B of memory per node 
and no virtual memory capabilities. This may seem to be a drastic limitation, but in 
practice, other issues become very important as the size of the problem increases. For 
example, for a modest basis set, such as 6-3 lG(d) (15), computations on relatively large 
molecules can be undertaken. One such example is the large cyclic adenosine 
monophsophate (cAMP) molecule with the molecular formula C 1 0 O 6 N 5 P H n " . For a 6-
31G(d) basis set, this molecule has 389 basis functions. For such a large molecule, 
finding the lowest energy conformation becomes a major challenge, not just because of 
the required computation time, but also due to the large number of conformations 
possible. So, even though a gradient may only take about 2 hours on 128 nodes of the 
Intel Delta, the intrinsic optimization problem will make finding the lowest energy 
conformer (or conformers) a daunting task. Nonetheless, it is important to explore the 
alternative of distributing the Fock matrix across the nodes as a means of increasing the 
size of the problems that can be tackled (1). 

The following sections of the SCF code were modified to run in parallel: one-
electron integrals, one-electron effective core potential (ECP) integrals, two-electron 
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2. W I N D U S E T A L Parallel Implementation of GAMESS 21 

integrals, matrix multiplications, matrix diagonalization, one-electron gradient integrals, 
one-electron ECP gradient integrals and two-electron gradient integrals. The matrix 
diagonalization is actually only partially parallelized. When molecular symmetry is 
available in the molecule of interest, the Fock matrix is block diagonal. Each of these 
blocks can be sent to individual nodes to be diagonalized and then a global summation 
performed to get the total result on all nodes. When no molecular symmetry is available 
(i.e. C] symmetry), the diagonalization is completely serial and executes on only one 
node. The diagonalization step of an SCF calculation (order N 3 , where Ν is the number 
of basis functions) actually becomes the bottleneck for a large enough problem, once the 
two-electron integrals (approximately of order N 4 ) have been parallelized (11). This 
means that the matrix diagonalization code needs to be a focus for new parallel 
developments. One approach for dealing with this bottleneck is to use a second-order 
method(76), but that has not yet been implemented into GAMESS. Details about the 
parallelization of the other steps in the SCF will not be given here since they have been 
given in many other studies and well accepted techniques were used. 

Since the gradients are parallelized, optimizations, transition state searches, IRCs and 
numerical Hessians can also be executed in parallel. This provides the robustness of the 
parallel SCF part of the program. Many projects have already used the parallel SCF 
option of GAMESS to perform computations. Summaries of some of this work may be 
found in reference 17. 

D. Integral Transformation 

One of the biggest challenges to the parallelization of post SCF and analytic Hessian 
codes is the A O to MO integral transformation(3). Formally, the transformation from 
A O (<μν|λσ>) to M O (<ij|kl>) is an order N 5 operation 

<ij|kl> = Σ μ ^ μ Σ ν ς ν Σ ^ , λ Σ ^ , <μν|λσ> 

For all of the current applications in GAMESS, only a subset of the molecular integrals 
are needed. These are the <ij|kl>, <aj|kl>, <ab|kl>, <aj|kb>, and <aj|bl> integrals, where 
i , j , k, 1 are MOs in the occupied space (core and active space for MCSCF, as discussed 
below), and a, b are MOs in the unoccupied (virtual) space. Since the transformation 
that was previously in GAMESS performed a full transformation, a new transformation 
(14) was incorporated into GAMESS. This transformation can use an unsorted list of 
A O integrals and molecular symmetry (Abelian groups ov\y(14b)). The A O integrals 
can either be taken from disk or calculated directly. One of the options in this 
transformation performs passes over the full list of A O integrals to obtain subsets of the 
M O integrals. This algorithm is a perfect target for parallelization. Each node performs 
one or more passes over the AO integrals and obtains a subset of the M O integrals. In 
this way, the M O integrals are spread across all of the nodes and no communication is 
needed (unless N X T V A L load balancing is used). While this has the advantages of no 
communication and distributed MO integral storage, the algorithm also has the 
disadvantage that each node must either have the complete list of A O integrals available 
to it on disk or calculate the AO integrals each time they are needed. On a high 
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communication speed parallel system, it should be possible to store only a subset of the 
A O integrals on each node, which can be broadcast to all nodes, so that each processes 
the entire AO list. We plan to implement this soon, since it will dramatically cut the A O 
integral storage requirement. Another potential disadvantage is that the number of 
passes must be evenly divisible by the number of processors (for LOOP load balancing); 
otherwise load imbalance can occur. However, the number of passes can be somewhat 
controlled by the amount of memory used for the transformation. So, in general, it is 
possible to ensure even load distribution. This transformation has now been interfaced 
to the MCSCF code, the CI code, the analytic Hessian code and the orbital localization 
code(7&/). Parallelization of the CI code is explained below as part of the MCSCF 
implementation (2a). 

New algorithms for the parallelization of transformations may well be designed 
in the future. However, new algorithms will still have the M O integrals distributed 
across the nodes. So, it would only be necessary to modify the interface code for the 
front end of a new transformation for it to work with the rest of GAMESS. At present, 
however, the algorithm described above works fairly well. This is especially true for 
the MCSCF calculation where the A O integrals (for a disk based method) are only 
calculated once for each MCSCF energy (which may involve approximately 10-20 
iterations to obtain convergence). For more information about the transformation, the 
reader is referred to reference 2a. 

E. Approach to MCSCF 

The parallelization of the MCSCF is presented in detail in reference 2a, so only a brief 
overview will be given here. This reference also discusses the steps for the parallel CI 
code, an important part of the MCSCF code. First, some terms and issues must be 
discussed. Before an MCSCF wavefunction can be calculated (variously referred to as 
the full optimized reaction space (FORS) (19) or complete active space SCF (CASSCF) 
(20) formalism), the molecular orbitals must be partitioned into three different spaces. 
First, core orbitals with a fixed occupancy of two electrons must be identified. These 
orbitals generally do not contribute to the overall chemical reaction (i.e. they are not 
bond breaking or bond making orbitals). Next, an "active space" containing orbitals that 
are only partially occupied is identified. These are the orbitals that are directly involved 
in the chemical reaction and all possible configurations involving the active electrons 
and active orbitals are included in the calculation. Finally, the virtual or empty orbitals 
are identified. 

A key step in an MCSCF calculation is the choice of starting orbitals. Usually, 
the active space in a FORS MCSCF calculation contains the orbitals corresponding to 
the bonds being broken and formed during some process of interest, the associated 
antibonding orbitals, and sometimes lone pairs that may play an important role in the 
process. Since this view of the active space is very chemical, a natural method for 
obtaining the starting orbitals is to make use of the localized orbital capabilities in 
GAMESS. The canonical molecular orbitals obtained directly from a Hartree-Fock 
calculation may be transformed (18) to more "chemical" localized molecular orbitals 
(LMO's) using well defined unitary transformations. In GAMESS this L M O 
transformation may be performed either on the complete set of valence orbitals or 
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2. W I N D U S E T Parallel Implementation of GAMESS 23 

separately within each symmetry block. The advantage of the latter is that the 
preservation of symmetry minimizes the number of configuration state functions 
(CSF's) in the MCSCF calculation. The use of LMO's for choosing the active space 
makes it easy to identify the appropriate bonding MO's and lone pairs. In addition, it 
is a simple matter to reverse the phase of the bonding MO's to construct the 
corresponding antibonding orbitals needed to complete the active space. This is 
frequently a more effective procedure than using the canonical orbitals, since the 
canonical orbitals tend to be delocalized and therefore more difficult to identify as a 
particular antibonding moiety. Another effective choice for correlating orbitals are the 
modified virtual orbitals (27). These are derived from a cationic Fock operator, so they 
possess more valence antibonding character than the neutral virtual orbitals. 

Another issue that must be discussed is the actual bottlenecks of the MCSCF 
calculation. Unlike the SCF code, the MCSCF has several different bottlenecks that 
depend on the type of calculation performed. For example, a molecule with only a few 
core orbitals and a relatively large active space will have the CI portion of the 
calculation as the bottleneck. On the other hand, a molecule with many core orbitals and 
a relatively small active space will have the transformation and the solution of the 
Newton-Raphson (NR) equations as bottlenecks. Therefore, it is imperative that as 
many of the steps as possible be parallelized. Because of limited space, only a brief 
discussion of the amount of parallelization in each step will be presented. For details, 
the reader should examine reference 2a. The sections that are completely sequential are 
the initial orbital guess, calculation of the AO integrals, generation of the distinct row 
table, formation of the augmented orbital Hessian and the N R solutions. Of these, the 
first three are performed only once during the entire MCSCF energy calculation and 
formation of the augmented orbital Hessian is essentially trivial. However, solving the 
NR equations can be one of the major bottlenecks. The NR step is essentially a matrix 
diagonalization that finds the lowest eigenvector of the augmented Hessian. As 
mentioned earlier, parallel matrix diagonalizations are currently not very efficient (7). 

Of the remaining steps in an MCSCF energy calculation, the molecular integral 
sort, the calculation of contributions (loops) to the CI Hamiltonian (72), the calculation 
of electron density matrices, formation of the Lagrangian and orbital Hessian (22) are 
only partially parallelized. The code for calculation of the contributions to the CI 
Hamiltonian and the electron density matrices have variable dependencies that are not 
easy to unravel, so essentially only disk I/O (distribution of loops across all disks) is. 
parallelized. The other steps have global summations of large, relatively sparse matrices 
that require large amounts of communication. This communication time becomes 
comparable to or even larger than the CPU time savings from running in parallel. As 
mentioned earlier, these are probably places in the code where more care must be taken 
to send only the non-zero contributions, instead of the entire matrix. Finally, the 
integral transformation and the diagonalization of the Hamiltonian show very good 
efficiencies even with up to five RS6000/350 nodes tied together by Ethernet. The most 
time corisurning part of the Davidson diagonalization is the formation of the 
Hamiltonian from the many loops distributed across all of the nodes. Each node forms 
a partial contribution to HC, after which a global sum is performed. Since I/O is 
performed in parallel, the scalability of this step is very good. 

MCSCF gradients have also been parallelized so that actual chemical reactions can 
be explored using the parallel MCSCF technology. Specific timing examples and more 
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detailed information for both the MCSCF energies and gradients can be obtained from 
references 2a, 17a. 

F. Analytic Hessians 

Analytic Hessians in the M O basis involve several steps: (1) calculation of the A O 
integrals and the appropriate wavefunction; (2) transformation of integrals from the A O 
basis to the MO basis; (3) calculation of the one-electron second derivative (Hessian) 
integrals; (4) calculation of the two-electron Hessian integrals; and (5) solution of the 
coupled perturbed Hartree-Fock (CPHF) equations (23). Before a parallel 
transformation was available, a small scale algorithm was used in GAMESS (4). In that 
algorithm, all nodes would compute the one-electron Hessian integrals in parallel. Then, 
the master node performed the transformation while the other nodes (generally only 1-3 
other nodes) calculated the two-electron Hessian integrals in parallel. After the master 
node finished with the transformation, it could participate in the calculation of the two-
electron Hessian integrals i f any were left to calculate. After steps 1-4 were finished, 
only the master node would complete the calculation by solving the CPHF equations. 

Now that a parallel transformation is available, steps 1-4 can be performed in 
parallel. However, the full AO integral list must be calculated on each node and put 
onto a local disk (if using the disk based method) so that the parallel transformation 
works properly. This is an extra step that is not needed when the code is executed 
sequentially. Unfortunately, most of the CPHF solution is still performed sequentially 
and, after approximately 3 nodes, this becomes the computational bottleneck. Only the 
I/O to form the various pieces needed to set up the CPHF equations is performed in 
parallel. Since the matrices involved are quite large, the global summation takes 
essentially all of the time saved by the parallel I/O. This algorithm is the only one 
currently available in GAMESS. 

As mentioned earlier, it is useful to make sure that the sequential code is relatively 
up to date before parallelization. The current method for solving the CPHF equations 
is relatively slow, so before an effort is made to parallelize this step, a new solver will 
be implemented. Using the same example used when the first analytic Hessian 
algorithm was published, Table II compares the computational times (on the master 
node) for each of the two algorithms. The test case is the C s molecule 5-aza-2,8-dioxa-
l-stibabicyclo[3.3.0]octa-2,4,6-triene (Sb0 2NC 4H 4) using a 3-21G* basis set (24) giving 
110 basis functions. The calculations were performed on three RS6000/350s dedicated 
to the test. The Ethernet connecting the three machines was not dedicated to the test and 
therefore, the tests had to compete with other packets on the network. 

As can be seen in Table II, the new transformation is faster than the old one for one 
node. Also, the CPHF solution for the new algorithm is faster on one node than is the 
old algorithm. The actual CPHF code has not been changed. The difference in time 
comes from the number of integrals that must be read in and used. In the old algorithm, 
many of the integrals that were read in were discarded since the old algorithm performed 
a full transformation. The new transformation calculates only those integrals that are 
actually needed. The timing example also shows that indeed the CPHF step is the main 
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bottleneck at three nodes. It is very clear that parallelization of the CPHF solution is 
needed before the scalability of the analytic Hessians can proceed to more nodes, but it 
is likely that good speedups on up to dozens of nodes will be achieved eventually. 

Table II. Timing example. Time in seconds for the master using the new/old 
algorithm. 

P= 1 2 3 

setup 0.57/0.58 0.69/0.78 0.73/0.84 
le- ints 1.10/1.12 0.87/0.86 0.88/0.84 
huckel guess 15.77/15.77 15.74/16.46 16.17/16.96 
2e- intsa 111.19/133.90 55.34/62.41 37.42/39.48 
SCF cycles5 223.13/190.87 103.26/103.92 79.44/66.25 
properties 2.23/1.61 2.46/2.44 2.63/2.78 
2e- ints - /206.23 111.28/211.29 110.97/213.38 
transformation0 1113.67/1881.05d 552.38/1902.15 381.09/1897.92 
le-hessints 28.20/28.62 16.46/17.05 14.63/14.74 
2e- hess ints 3322.92/3367.57 1668.86/83.93 1113.37/12.41 
CPHF 1438.66/1653.75 1433.34/1673.50 1477.32/1664.48 

total CPU 6258.01/7481.69 3961.34/4075.05 3235.27/3930.85 

a. 6,125,653 AO integrals. 
b. 13 iterations. 
c. 5,871,750 MO integrals. 
d. This time includes the integral ordering needed in the old transformation as well as 
the actual transformation time. 

G. Parallel MP2 Code 

A new MP2 code from HONDO (14) has been incorporated into GAMESS. Since 
this code had already been parallelized, the parallel calls in the new code were 
translated to TCGMSG. A brief description of the HONDO algorithm used will be 
presented here. 

The MP2 code includes its own specialized transformation. If the A O integrals 
are calculated directly, the MP2 transformation is essentially the same as the one 
described earlier in this paper. However, the disk based transformation works 
differently. The MP2 transformation assumes that the AO integrals are distributed 
across all of the nodes. Each node is assigned a range of M O integrals to calculate. 
Then, each node (in its turn) reads in a buffer load of integrals, broadcasts the buffer to 
all other nodes, and calculates the contributions of those AO integrals to its range of M O 
integrals. When all of the AO integrals from every node have been used, the M O 
integrals are used to form contributions to the MP2 energy. Thus, the actual M O 
integrals are not sent to disk, only held in memory. If the nodes cannot hold their ranges 
of M O integrals in memory, several passes over the AO integrals are needed. This 
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transformation has the advantage that it uses the AOs as they are distributed across the 
nodes (i.e. the entire A O list does not need to be calculated on each node). However, 
it does require the broadcast of order N 4 A O integrals resulting in a large amount of 
communication. This particular implementation of the algorithm also has the 
disadvantage that it is only implemented for RHF wavefunctions. 

H. Conclusions 

Most of the functionality of GAMESS now executes in parallel. Table III provides a 
summary of the parallel portions of GAMESS. 

While most of GAMESS has been parallelized, further optimizations of existing 
algorithms and better algorithms are needed to improve the general efficiencies of the 
code. Specifically, the following areas need more work: parallel matrix diagonalizations 
(directly affecting the SCF and NR solution in the MCSCF); large global summations 
of large sparse matrices need to be made much more efficient; solution of the CPHF 
equations in parallel; and new parallel transformations are needed. 

Table III: Tabulated overview of parallel GAMESS 

Energy Gradient Hessiana MP2 CI Semi 

RHF X X X χ X 

UHF X X 

ROHF X X X X 

G V B X X X X 

MCSCF X X X 

a. Refers to analytic evaluation. Numerical Hessians are available whenever analytic 
gradients are available. 
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Chapter 3 

Applications of Parallel GAMESS 

Kim K. Baldridge1, Mark S. Gordon2, Jan H. Jensen2, 
Nikita Matsunaga2, Michael W. Schmidt2, Theresa L. Windus3, 

Jerry A. Boatz4, and Thomas R. Cundari5 

1San Diego Supercomputer Center, P.O. Box 85608, San Diego, CA 92186 
2Department of Chemistry, Iowa State University, Ames, IA 50011 

3Department of Chemistry, Northwestern University, Evanston, IL 60208 
4Phillips Laboratory, OLAC PL/RKFE, 

Edwards Air Force Base, CA 93523 
5Department of Chemistry, University of Memphis, Memphis, TN 38152 

In this paper we discuss several recent applications that would have been 
difficult or impossible without the availability of the parallel 
implementation of the electronic structure code GAMESS. These 
applications include the study of highly strained rings, such as inorganic 
prismanes and bicyclobutanes, cage compounds such as cyclophanes and 
atranes, the neutral <-> zwitterion isomerization of glycine, transition 
metal-main group binding, and the implementation of parallel graphics. 

The previous paper presented an outline of the strategy used in converting the electronic 
structure code GAMESS to a general parallel code [1]. In this paper, we turn to a brief 
discussion of several applications of this code. The parallel capability of GAMESS has 
already been used to solve a broad spectrum of problems of importance to organic, 
inorganic, organometallic, and biochemistry that would otherwise have been impossible 
within a reasonable time frame. Indeed, the parallel capability allows us to perform 
calculations on relevant compounds within a time frame that is meaningful to 
experimental colleagues. Several of these applications are summarized in the 
following sections. 

I. Highly Strained Rings 

An important area of application for parallel GAMESS has been the design of 
metastable species that have potential as new high energy fuels or fuel additives. Two 
such endeavors have been the study of the potential energy surface of the B N analog of 
prismane and the tetrasila analog of bicyclobutane. 

A. BN Prismanes 
A n example of the performance (and the difficulties) of parallel SCF calculations is 
provided by the B N analog of prismane, 

0097-6156/95A)592-0029$12.00/0 
© 1995 American Chemical Society 
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30 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

a high energy isomer of the benzene analog borazine. This relatively small example 
(169 basis functions) serves to illustrate some of the successes and potential bottlenecks 
that arise from parallel computations. The results are summarized in Table 1, where the 
speedups for an energy plus gradient run are presented as a function of the number of 
processors. The overall speedup (last column) is essentially perfect (100%) through 8 
processors, 92% through 16 processors, and slowly tails off as the number of processors 
increases to 256. Even at 256 processors there is a better than 25% speedup, and one 
expects that as the size of the problem is increased, the tailing off of efficiency will 
occur more slowly. The source of the loss in efficiency as the number of processors 
increases may be determined by analyzing the middle three columns of the table. While 
the two-electron gradients are essentially perfectly parallel, the efficiency of the Hartree-
Fock part of the calculation parallels that of the overall job. Further analysis reveals 
that, while the calculation is dominated by the (almost perfectly parallel) integrals plus 
gradients for small numbers of processors, the sequential Fock matrix diagonalization 
becomes a larger percentage of the calculation as the number of processors is increased. 
Since matrix diagonalizations are such an important part of electronic structure 
calculations, an effective treatment of this part of the calculation in parallel 
computations must be addressed. 

Table 1. Incremental Performance Advantage and Efficiency of BN Prismane* 

# Proc. int + RHF le" grad 2e~ grad total 

8 1.0 1.0 1.0 1.0 

16 1.87(93.5) 1.89(94.5) 1.98(99.0) 1.84(92.0) 

32 3.26(81.5) 1.56(39.0) 3.91(97.8) 3.09(77.2) 

64 5.22(65.2) 1.59(19.9) 7.64(95.5) 4.74(59.2) 

128 7.77(48.6) 3.19(19.9) 4.74(92.1) 6.74(42.1) 

256 10.02(31.3) 3.36(10.5) 27.32(85.4) 8.35(26.1) 

''The values in parentheses are efficiencies. The calculations are carried out at the RHF/6-31 lG(2d,2p)//RHF/SBK(d) 
level of theory (204 basis functions) on a 512-node Intel's Touchstone Delta (16Mb memory/node). 
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3. B A L D R I D G E E T A L Applications of Parallel GAMESS 31 

The known potential energy surface for B N prismane is shown in Figure 1. At 
the MP2/SBK(d)//RHF/SBK(d) level of theory, B N prismane is 161 kcal/mol higher in 
energy than the borazine global minimum [2]. Several other minima have been found 
on this surface, including a planar isomer of borazine that is itself 100 kcal/mol higher 
in energy than borazene. To date, no direct route from B N prismane to borazine has 
been found, and all routes leading from B N prismane appear to involve energy barriers 
in the range of30-40 kcal/mol. Of particular interest is the pair of three-membered rings 
shown at the right in the figure. Since these rings lie 40 kcal/mol above B N prismane, 
they may provide a synthetic route to this high energy species. Potential syntheses are 
being explored at Rockwell Science. 

B. Tetrasilabicyclobutanes 

The tetrasila-analog of bicyclobutane has been of interest for several years, since it is 
predicted [3] by electronic structure theory to exist as two isomers (Figure 2) that differ 
primarily in the length of the bridgehead Si-Si distance, a normal 2.35À in the short 
bond (SB) isomer and a much longer 2.9Â in the long bond (LB) isomer. In the 
unsubstituted compound, the LB isomer is predicted to be lower in energy by about 10 
kcal/mol, at the GVB/6-31G(d) level of theory. The only analog that has been 
synthesized is highly substituted, with t-butyl groups replacing the hydrogens at both 
bridgehead positions and substituted phenyl rings at the peripheral positions. In contrast 
to the theoretical predictions, only the SB isomer is found for this substituted compound. 
This difference between theory and experiment is important to understand. The 
unsubstituted compound (which has not yet been synthesized), may be used as an 
additive to the most common propellant used in space launches: liquid oxygen 
(LOXyiiquid hydrogen (LH2) mixtures. Using 2.5 mole % of the unsubstituted 
compound in LOX/LH2 is found to increase the specific impulse (Isp, the most common 
measure of fuel effectiveness, is proportional to the energy gain and inversely 
proportional to the mass of the combustion products) by 11 seconds. This translates into 
a savings of several million dollars per launch. Therefore, GVB/6-31 G(d) calculations 
were performed on the SB->LB isomerization as a function of the group R in the 
bridgehead positions. As shown in Table 2, increasing the size of the bridgehead 
substituents, destabilizes the LB isomer, relative to the SB isomer. This explains why 
only the SB isomer is found experimentally. Of particular interest is our prediction that 
the two isomers of the dimethyl analog are nearly isoenergetic, separated by about a 6 
kcal/mol barrier. This suggests that both isomers of the dimethyl compound may 
be synthesized. Note that the size of the basis set for the di-t-butyl species (nearly 200 
basis functions) necessitated the use of parallel GAMESS for the timely completion of 
the project. 

IL Cage Compounds 

We have recently been interested in a series of cage compounds that may be generally 
represented as 
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•185.0 
(-161.2) 

Figure 1. RHF/SBK(d) Potential Energy Surface of BN Prismane. 
The values are in kcal/mol. The values in parentheses are of MP2 
relative energies. A l l ZPE's are corrected by multiplying by 0.89. 
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3. B A L D R I D G E E T A L . Applications of Parallel GAMESS 33 

R 

With the apex E atom = Si, P, Ti , etc., they are silatranes, phosphatranes, titanatranes, 
etc. The impact of the equatorial atoms Y attached to Ε (e.g., Υ = Ν are aza-atranes) and 
the axial substituents R on the chemical and physical properties of the atranes is of 
considerable interest. Silatranes, for example, are precursors for new SiO materials, 
while the phosphatranes are strongly basic compunds with great potential as catalysts. 
When the base of the cage compounds is a benzene ring, with the three methylene 
strands attached at the 1,3,5 positions, these compounds are cyclophanes. 

A . Cyclophanes 

Pascal has synthesized the carbon cyclophane, with the bridgehead Η pointing inside 
(ENDO) the cyclophane ring [4]. This unusual geometric arrangement prompted 
(unsuccessful) experimental efforts to synthesize the sila-analog. In an attempt to 
understand why (apparently) the ENDO structure is preferred in the carbon compound, 
whereas the EXO structure is preferred in the silicon compound, we performed a series 
of RHF/6-31G(d) calculations on both C and Si cyclophanes [5]. The ab initio 
calculations predict that the ENDO isomer is 13 kcal/mol lower in energy than E X O , in 
agreement with Pascal's experiments. Replacing the apex carbon with a silicon results 
in a dramatic reversal of stability, with the EXO structure now preferred by 43 kcal/mol! 
Again, this is consistent with the synthetic difficulties for this species. A simple 
explanation for this lies in the bond dipoles of C-H vs. Si-Η. Whereas the former bond 
is polarized C" FT, the latter is polarized Si +H" . So, in the carbon case one has a 
positively charged Η pointing towards the negative benzene π cloud, whereas in the 
silicon compound it is a negative II that points toward the π cloud. So, for C it is an 
attractive interaction, while for Si the interaction is repulsive. This assertion may be 
assessed in two ways. One might consider replacing the Η at the bridgehead by a more 
electropositive element, such as L i . Doing so makes the ENDO structure only slightly 
(3 kcal/mol) more favorable for the C case, but stabilizes the ENDO structure by 40 
kcal/mol for Si! One might also enlarge the cage from two to three carbons/strand, to 
alleviate the repulsive interaction and the internal crowding. For the carbon compound, 
the larger cage favors the ENDO structure by 18 kcal/mol, as compared with 13 
kcal/mol for the smaller cage. For the silicon species, the larger cage favors E X O by 
only 2.5 kcal/mol, compared with 43 kcal/mol for the smaller cage. These extensive 
calculations, made possible by parallel electronic structure codes, therefore predict that 
it may be possible to synthesize the ENDO structure by making the cage one carbon 
larger. 
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short bond long bond 
isomer isomer 

Figure 2. Bond Stretch Isomerism. 
GVB/3-21G(d) ab initio calculations predict the long bond isomer 
to be more stable by 10 kcal/mol. 
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Table 2. R e l a t i v e Energies of I^Si^H^ Bond-Stretch Isomers a 

R = H 

Le v e l of theory SB TS LB 

GVB/3-2lG*//GVB/3-2lG* 0.0 2.1 -9.6 
(0.0) (2.0) (-9.7) 

GVB/6-3lG(d)//GVB/3-21G* 0.0 1.1 -12.4 
(0.0) (1.0) (-12.5) 

SOCI/6-31G(d)//GVB/3-21G* 0.0 1.3 -10.1 
(0.0) (1.1) (-10.1) 

R = CH 3 

SB TS LB 

GVB/3-21G*//GVB/3-21G* 0.0 6.3 -1.9 
(0.0) (6.3) (-2.0) 

GVB/6-31G(d)//GVB/3-21G* 0.0 4.5 -4.5 
(0.0) (4.5) (-4.6) 

SOCI/6-31G(d)//GVB/3-2lG* 0.0 5.1 -1.8 
(0.0) (5.1) (-1.9) 

R = C(CH 3) 3 

SB TS LB 

GVB/3-2lG*//GVB/3-21G* 0.0 7.2 4.9 
(0.0) (6.9) (4.6) 

GVB/6-3lG(d)//GVB/3-21G* 0.0 6.0 2.5 
(0.0) (5.7) (2.2) 

SOCI/6-3lG(d)//GVB/3-2lG* 0.0 6.8 5.1 
(0.0) (6.5) (4.8) 

a Energies i n kcal/mol. ZPE-corrected energies i n parentheses. 
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B. Silatranes 

In the solid state, most silatrane trans-annular (SiNJ distances are 2.05 - 2.20Â. This 
is considerably shorter than the sum of the van der Waals radii (3.5Â), but much longer 
than typical SiN single bond lengths (1.7-1.8Â). These relatively weak SiN t bonds are 
even longer in the gas phase. The two gas phase structures (for R = F[6] and CH3[7]) 
reveal SiN t distances that are 0.28Â longer than those in the corresponding crystals. The 
solution phase SiN t distances appear to be intermediate between those in the gas phase 
and solid state [8]. This indicates that the SiN t bond is weak and easily deformed. 

The silatrane series (E = Si) has been studied as a function of Υ (= Ο, N H , NMe, 
CH 2 ) and R (= H, F, OH, N H 2 , C H 3 , C l , SH, PH 2 , SiH 3) [9]. Key issues are the 
fundamental nature of the transannular SiN t interaction and the difference between gas 
and condensed phases. The geometry optimizations were performed at the SCF level 
of theory, mostly using the 6-31 G(d) basis set. The general approach has been to obtain 
starting structures with semi-empirical A M I [10] or PM3[11] geometry optimizations 
and hessians. The ab initio calculation (run in direct mode) typically required 400-800 
minutes of time on 128 nodes of the Intel Touchstone Delta at CalTech. 

Because the SiN t bond is so weak, it is difficult to accurately reproduce the 
experimental distances. At the RHF/6-31 G(d) level of theory, the two known gas phase 
SiN t distances are over-estimated by more than 0.2Â. Expanding the basis set to include 
two sets of d functions on Si and its five adjacent heavy atoms, plus a set of diffuse sp 
functions on the same six heavy atoms, decreases the SiN t distance in the R = F silatrane 
by 0.12À to 2.416Â, bringing it into much closer agreement with the experimental value 
of 2.32Â. The remaining error is due to correlation and additional basis set effects. 

The softness of the SiN t bond is dramatically illustrated by plotting the energy 
of the R = F silatrane as a function of the SiN, distance. When this distance is varied 
over a 0.5Â range, the energy increases by only 4 kcal/mol! This means that crystal 
packing forces need not be larger than 1 kcal/mol to produce the observed 0.28À 
compression of the silatrane SiN t bond. The effect of condensed phase on the SiN t 

distance has been investigated by modeling the effect of solvent DMSO with a simple 
reaction field cavity model [12]. A cavity radius of 3.67Â, derived from the 
experimental density of fluorosilatrane, and a dielectric constant of 45 were used in 
these simulations. Re-optimization of the geometry in the presence of solvent decreases 
the SiN t distance by 0.31Â, essentially the difference between the experimental gas 
phase and crystal bond lengths! In addition to the softness of the SiN t surface already 
discussed, this large change in the SiN t distance is also due to the large dipole moment 
in the silatranes which interact strongly with the solvent dielectric. 

Finally, Boys localized molecular orbitals (LMO's) [13] have been used to 
develop an understanding of the nature of the SiN t bond. These L M O ' s illustrate that 
the SiN t bonds are best described as nitrogen lone pairs, interacting only weakly with 
the transannular silicon atoms. This supports the interpretation of these bonds as dative 
in character, in agreement with the description put forth by Haaland [14]. 
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C. Phosphatranes 

The proton affinities of a series of azaphosphatranes (Ε = Ρ, Υ = Ν) have been studied 
to determine their relative base strengths and the effect of substitution and protonation 
on the transannular PN t interaction [15]. As was the case for the silatranes discussed 
above the ab initio investigation of this large group of complex molecules (substituents 
Ζ on Ρ = H + , F + , ( X , C H 2 , C H 3

+ , NH, N H 2

+ , 0 , 0 + ) would have been impractical without 
the availability of parallel electronic structure codes and parallel computers. These 
calculations were performed on the Intel Touchstone Delta, in a manner analogous to 
that described above for the silatranes, using similar basis sets at the SCF level of 
theory. Four molecules, with Ζ = C H 2 or NH, have been found to be stronger bases than 
the parent compound, suggesting that these species are likely targets for new catalysts. 
Analysis of the PN t distances and electron density analyses show that there is clear 
evidence for transannular dative bonding in the cationic species. Protonation clearly 
results in a dramatic strengthening of this bond. The corresponding bond distances 
decrease by more than 1Â! The use of the reaction field model to simulate the solvent 
DMSO suggests that the basicity trends found for the gas phase compounds are not 
changed in solution. 

III. Glycine Isomerization 

It is well known that in solution amino acids exist primarily as zwitterions (Z), whereas 
in the gas phase only the neutral structure (N) is a minimum on the potential energy 
surface (PES). It is not clear, however, what forces fundamentally operate to stabilize 
Ζ relative to N . One can, for example, simulate the bulk effects of aqueous solution 
using a simple reaction field model [16J, and such calculations do predict the Ζ form to 
be more stable. However, such calculations do not address the role played by individual 

electronic interactions between water molecules from the solvent and the amino acid. 
To explore this question, we have employed ab initio quantum chemistry to explore the 
effects on the Ν <-> Ζ equilibrium of successively adding water molecules to the 
simplest amino acid glycine. The geometry optimizations and subsequent tracing of the 
minimum energy paths (MEP's) were performed at the SCF level of theory, on the 16 
node iPSC 860 Intel parallel computer, located at Kirtland A F B , using both the 6-
31 G(d) [17] and Dunning DZP [18] basis sets. Additional single point calculations were 
performed at both the MP2 and MP4 levels of theory [19], using the aforementioned 
basis sets, as well as the Dunning correlation consistent basis sets [20]. 

Krogh-Jespersen has recently demonstrated that Ζ is not a minimum on the 
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isolated glycine PES [21], when adequate basis sets are used. The energetics for the 
isomerization of the glycine-H20 complex are summarized in Figure 3. At the SCF 
level of theory minima are found at both the Ν and Ζ structures; however, the transition 
state separating the two isomers, and therefore the Ζ minimum, disappears at correlated 
levels of theory. Note that the water molecule does not directly particpate in the proton 
transfer. Rather, it functions as an observor, so we refer to this process as intramolecular 
proton transfer. It is important to note that the use of larger basis sets and higher levels 
of perturbation theory (i.e., MP4) have less than a 1 kcal/mol effect on the predicted 
energetics. The MP2/DZP++//SCF/DZP energy of the neutral glycine-water complex 
is 12.8 kcal/mol below that of the zwitterion when vibrational zero point (ZPE) 
corrections are included. The same Ζ structure shown in Figure 3 can transfer a proton 
through the water molecule (water-assisted proton transfer), via a different transition 
state. The energetics for this process are shown in Figure 4. Unlike the intramolecular 
proton transfer, the transition state for the water-assisted proton transfer still exists upon 
the addition of larger basis sets and correlation corrections. Addition of ZPE corrections 
does raise Ζ above the transition state, and the same Ζ structure is unstable to 
isomerization via the intramolecular route. However, these results suggest that the 
water-assisted proton transfer may be the more viable way to stabilize Ζ in cases for 
which more than one Ζ·ηΗ 2 0 isomer may exist. 

The energetics for the intramolecular and water-assisted proton transfer 
mechanisms for the glycine-2H20 complex are shown in Figures 5 and 6, respectively. 
The features of the potential energy curve for the intramolecular route are similar to 
those for the single water complex. This Ζ complex is found to be a minimum at the 
SCF level of theory, but the transition state again disappears at correlated levels of 
theory. Unlike the single water case, the water-assisted route for glycine-2H20 
originates from a different (essentially isoenergetic) Ζ isomer. This is important, 
because we find that the transition state for this route remains higher than both Ζ and N , 
even after the addition of correlation and ZPE corrections. It is also important that the 
Ζ isomer is found to be only 4.8 kcal/mol higher in energy than N , in the presence of 
two water molecues. It is reasonable to consider that part of the PES that connect the 
two glycine-2H20 zwitterion structures, corresponding to the intramolecular and water-
assisted routes. The transition state that connects these two structures has been 
identified, and the barrier separating them is 8 kcal/mol at the MP2/DZP++ level of 
theory. So, the glycine-2H20 zwitterion appears to be a stable minimum on the PES. 
These results clearly demonstrate that electronic interactions between the amino acid 
and individual solvent molecules play a crucial role in the stabilization of the zwitterion 
species. 

IV. Transition Metal Complexes 

The transition metals (TMs) constitute a family of elements of importance in advanced 
materials, biochemistry, and catalysis. [22] The large size of many T M complexes and 
the demands of the methods needed to accurately describe their chemistry make parallel 
computing very attractive in this area. Our main algorithmic approach to the challenges 
of computational T M chemistry entails the design, testing and use of effective core 
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Figure 3. Intramolecular proton transfer IRC and energetics for the glycine-H20 
complex. 

Figure 4. Water-assisted proton transfer IRC and energetics for the glycine-H20 
complex. 
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Figure 5. Intramolecular proton transfer IRC and energetics for a glycine*2H20 
complex. 

Figure 6. Water-assisted proton transfer IRC and energetics of a glycine*H20 
complex. 
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potentials (ECPs).[23] It is important to compare the efficiency of parallel ECP codes 
with traditional all-electron methods. The challenges which arise in applying quantum 
chemical methods to TMs have been discussed in more detail previously. [23, 24) A 
representative problem is chosen below to illustrate the possibilities for parallel code in 
T M chemistry. 

Recently there has been a great focus on complexes with multiple bonds between 
TMs and heavier main group (MG) elements. [25] Apart from a fundamental interest in 
multiple bonding involving heavier M G elements such complexes have been envisioned 
as precursors and intermediates in the synthesis of solid-state advanced materials. [25] 
A n exciting series of TM=MG(heavy) complexes is provided by Parkin and 
Howard[25a,b], Cp'2M(E)py, 1 (Figure 7). Using the parallel version of GAMESS[26] 
we can model the parent Cp 2 ME, 2, in conjunction with these experimental studies. 
Calculated M E bond lengths (in Â) at the RHF level are (experiment in parentheses) 
ZrO = 1.76 (1.804(4) ), ZrS = 2.28 (2.334(2) ), ZrSe = 2.42 (2.480(1) ), ZrTe = 2.68 
(2.729 (1) ).[25a] The results are of equal quality for Hf analogues.[25b] The Ti-oxo 
bond length in Cp 2TiO is 1.61 , in good accord with TiO = 1.665(3) in Cp*2Ti(0)(4-
phenyl-py) (Cp* = η 5 - C5Me5).[27] Uniformly good agreement between theory and 
experiment from the lightest (Cp2TiO) to heaviest (Cp2HfTe) member in the series is a 
powerful demonstration of the ability of parallel codes to open up all areas of the 
Periodic Table to computation. 

The example discussed above highlights two important points about the promise 
of parallel computing. On a standard workstation, geometry optimization and 
calculation of the energy hessian for a complex such as_2 can take several weeks, but 
just a few hours to a day on a parallel platform depending on the number of processors 
and their power. Vast reductions in wall clock time are thus realized through the use of 
parallel algorithms and architectures. A second related point is that parallel 
supercomputers make it possible to more closely model experimental systems. Making 
the model as close as possible to an experimental system has important scientific 
implications - errors between theory and experiment can be more confidently ascribed 
to deficiencies in the model or deductions based on experimental evidence. Although 
2 is not a perfect model of 1 it is significantly larger than is feasible to study without 
parallel computers; further improvements in methods and technologies will enable direct 
study of 1. With parallel computing more realistic model complexes with the bulky 
ligands that organometallic chemists use to engender kinetic and thermodynamic 
stability can be studied. In other words, the chemistry that occurs in the CPU more 
closely resembles that which occurs in the test tube. Thus, the promise of parallel 
computing lies in the more productive collaborations between theory and experiment it 
affords through the study of larger, more accurate models in a shorter period of time. 
This is an important consideration in meeting the grand challenges of computer-aided 
design in catalysis and advanced materials, where transition metals play a very 
important roles. 

V. Graphics for the Parallel World 

The detailed nature of chemical questions being asked and hence the degree of 
complexity in molecular blueprints are increasing at a rate only manageable by advanced 
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Figure 7. 1. Experimental Complex. 
2. Computational Model. 
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computing methods, as exemplified with the applications of parallel GAMESS given 
above. Despite the extraordinary abilities of modern hardware technology and coding 
methods to manipulate the raw data, the rate limiting step in harmonizing the intricacy 
and precision required to push forward these chemical frontiers ultimately comes down 
to the process of man-machine information transfer. Along this line, words are to scalar 
processing what images are to parallel processing, thus, the development of versatile and 
facile three-dimensional visualization tools is the key to any successful human interface 
in this endeavor. 

Quantum Mechanical View (QMView) [28] has been designed to provide the 
chemist with an expansive array of molecular perspectives. QMView is an integrated 
visualization package which capitalizes on the increased capabilities of new graphics 
systems to profile three-dimensional molecules not only by their common ball-and-stick 
or space-filling models, techniques which convey limited geometrical information, but 
also by molecular orbitals, electron densities (differential and absolute), electrostatic 
potential gradients, vibrational normal modes, regional hydro- or lipophilicity. Each 
profile can be adjusted, updated and presented three-dimensionally, fully colorized and 
in real time. 

Figure 8 shows the top level interface illustrating the various capabilities of 
QMView with the five icons: display of 1) structure, 2) vibrational modes, 3) electron 
properties, 4) molecular orbitals, and 5) special features. The special features include 
options to run in distributed mode, and special educational tutorials. Surface data (i.e., 
3 and 4) can be displayed in various manners, including options of two- or three-
dimensional pictures with choices of net, solid[29] or transparent surfaces. 

The second icon from the left in Figure 8 shows a static schematic of the 
imaginary vibrational mode for the bowl-to-bowl interconversion of corannulene, as 
calculated with local density functional theory (LDA)[30]. QMView displays 
vibrational motions in real time after selection of the particular mode frequency from 
a pull-down menu. There are mouse-driven buttons to choose the number of frames for 
which to display the vibration, and controls over the smoothness and amplitude of the 
motion. 

The third icon from the left in Figure 8 illustrates the total electron density of 
the anthracene photodimer, lepidopterene[31], in terms of a net surface, as calculated 
using GAMESS. This is one of the largest geometrical optimizations performed on the 
SDSC Intel Paragon to date, with 494 basis functions at the 6-3 lG(d,p) level of theory 
on 32 (32 MB) nodes. 

Figure 9 depicts the highest occupied, bonding molecular orbital (HOMO) 
superimposed on a transparent electron density surface of the C 2 0 fullerene molecule, as 
calculated using the local density approximation [32]. Theoretical calculations have 
allowed researchers to asess the stability of this molecule relative to other isomers [33]. 

An added feature of QMView is an interface to run in a distributed mode with 
the parallel platforms, specifically the Intel Paragon at SDSC. In distributed mode, 
parallel GAMESS, running on the Intel Paragon, computes the information that 
QMView displays in real time. The display includes the last configuration that has been 
calculated by GAMESS, along with (optionally) two inset x-y graphs, one of which 
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Figure 8. The first layer of the graphical user interface of QMVlEW. The icons 
represent a sampling of QMVIEW functions (chosen by picking with the mouse): 
Upper left: Depiction of the molecular structure of kuratowskaphane. 
Lower left: Depiction of the bowl-to-bowl vibrational motion in corannulene. 
Lower middle: Depiction of the total electron density of lepidopterene. 
Lower right: Depiction of the molecular orbitals for water. 
Upper right: This icon allows one to view a) a depiction of a calculation 
as it is riuining on a supercomputer platform (e.g., C R A Y or Paragon), and b) 
various tutorials as mentioned in the text 
RESEARCH: This icon allows visualization of user-generated input 

Figure 9. Depiction of the highest occupied, bonding molecular orbital, superimposed 
on an electron density surface of the C20 fullerene molecule. 
Calculations were performed using the Local Density Approximation. 
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monitors the energetics as a function of the algorithmic iteration, and the other which 
monitors the root-mean-square of the minimization procedure with respect to geometry 
as a function of the algorithmic iteration. This feature allows one to monitor a long 
quantum chemical calculation to make sure it is proceeding correctly and efficiently. 
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Chapter 4 

Object-Oriented Implementation 
of Parallel Ab Initio Programs 

C. L. Janssen, Ε. T. Seidl, and M. E. Colvin 

Sandia National Laboratories, Mail Stop 9214, Livermore, CA 94551 

Efficient implementation of ab initio methods on advanced computer ar
chitectures requires rethinking the algorithms and coding practices cur
rently in use. This creates an opportunity to experiment with new software 
development methodologies while building the next generation of codes. 
We have chosen an object oriented approach using the C++ programming 
language. Our goal is a production-quality set of computational chem
istry programs that run efficiently on scalar, distributed, shared memory, 
and massively parallel computers. We will describe our massively paral
lel quantum chemistry program with emphasis on understanding how well 
the object oriented approach facilitates the development of scientific soft
ware. We will also examine the effects that our design choice has had on 
efficiency, code reuse, and complexity. 

Rapid advances in computer hardware and software technology have made the im
plementation of efficient ab initio quantum chemistry programs a continuing effort. 
Since these methods are so computationally intensive, programmers must redesign code 
to take maximal advantage of the currently available computer hardware. For example, 
programs to compute the two electron integrals were originally constrained to fit into a 
few kilobytes of memory. They have now been replaced by much larger programs that 
take advantage of vectorized computer architectures. This constant algorithmic evolu
tion has not been matched by changes in software development methods. After early 
machine language versions of quantum chemistry programs, the community quickly 
settled on the FORTRAN programming language, which has seen few changes in the 
last two decades. 

There are several reasons for the slow change of implementation language; one of 
the most important has been that, until recently, compilers of other languages could not 
generate executable programs as efficient as the best FORTRAN compilers. Although 

0097-6156/95/0592-0047$12.00/0 
© 1995 American Chemical Society 
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48 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

high performance compilers are available in a number of new languages suitable for 
scientific computing, the quantum chemistry community continues to be reluctant to 
use them. This continued reluctance is due in part to the time required to learn new 
computer languages and, in our opinion, an underestimation of the value of modem pro
gramming methods. In particular, object oriented programming methods and languages 
provide powerful ways of organizing programs that are particularly useful for dealing 
with complex quantum chemistry programs, without sacrificing efficiency. Moreover, 
these new computer languages will help reduce the burden of creating programs that 
are efficient on diverse computer architectures ranging from stand alone workstations 
to massively parallel supercomputers. 

The Object Oriented Approach 

One of the main advantages of object oriented programming is that it provides mech
anisms for hiding the complexity of large software systems. There are several ways in 
which the object oriented approach helps in this regard, but we will focus on the ways 
in which the object oriented approach eases reuse of code, improves portability, and 
produces more reliable programs. These benefits are provided by object oriented lan
guages through two primary mechanisms: encapsulation and abstraction (and concomi
tant specialization). 

Encapsulation. Encapsulation is the grouping of related data and the operations that 
manipulate these data together into a new data type, sometimes called a "class". The 
concept of encapsulation is familiar to many users of traditional programming lan
guages, such as C, that allow the programmer to define new data structures. Object 
oriented languages take this one step further by giving the programmer of this new data 
type control over how the data that are encapsulated within the new type can be accessed 
and manipulated. The programmer decides whether or not individual pieces of data that 
compose the new type will be accessible to other users of the class. Additionally, the 
programmer writes subroutines that are considered a part of the new data type and that 
have privileged access to all of the component data of that type. 

The component data and functions belonging to a data type are known as its "mem
bers". Those members accessible to all users of the class are collectively referred to as 
the interface. The key to successful object oriented design is the appropriate choice of 
the interface, because as long as it is not necessary to change the interface to adapt the 
data type to a new situation, it is not necessary for any other users to be aware of the 
internal workings of the the data type. 

Just as an integer data type in a conventional programming language has specific 
instantiations while a program is running, for example, the integer variable n b a s i s 
may have the value 731, an object oriented class will have instantiations in a running 
program. These instantiations are the "objects" in object oriented programming. 

There is an important difference between member functions and ordinary functions. 
Ordinary functions typically operate on external data that are passed into the function. 
Member functions are associated with a specific object and usually act to modify or ex
tract data from this object. For example, a matrix object might have a matrix inversion 
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4. J A N S S E N E T A L . Parallel Ab Initio Programs 49 

member function which would calculate and return the inverse of the matrix held by 
the object. 

For a more detailed example, let us consider how a simplified self-consistent field 
(SCF) wavefunction might be encapsulated in the SCFWAVEFUNCTION data type (see 
Table I). The members of SCFWAVEFUNCTION are separated into two categories. The 

Table I: The SCFWAVEFUNCTION data type. 

Private Member Data: 
Type Name Description 
M O L E C U L E m o l e c u l e The nuclei and their positions. 
R E A L Ε The energy. 
MATRIX c o e f The molecular orbital coefficients. 
BOOLEAN c u r r e n t True if Ε and c o e f are current. 

Public Member Functions: 
Type Name Description 
R E A L ene rgy( ) Returns the energy of the molecule. 
MATRIX c o e f f i c i e n t s ( ) Returns a copy of coef . 

— geom (MATRIX) Sets the geometry of m o l e c u l e to the 
given MATRIX object. 

"private" member data are those data that users of SCFWAVEFUNCTION objects can
not access directly. They are considered internal to SCFWAVEFUNCTION and they can 
only be accessed by the designer of this class within the code for the member functions. 
Users of this class have access to the public member functions only. That is, they can 
only retrieve the energy or SCF coefficients, or change the molecular geometry. 

This greatly improves the integrity of the code, since it defines the only mecha
nisms by which the user can modify the object. If the user wants to change the geome
try, then this can only be done through the geom ( MATRIX ) member. If the geometry 
is changed, the member c u r r e n t would be set to false. The next time ene rgy ( ) 
is called, it would check c u r r e n t , find that it was false, recompute the energy, and 
finally return the answer. Subsequent calls to ene rgy ( ) would find that the stored 
energy was current and would return the energy without duplicating the computation. 
Now it is no longer up to the user to remember to update the energy when the geometry 
is changed. This is guaranteed by the SCFWAVEFUNCTION class itself. 

Abstraction. It is frequently useful to design generic data types for which a variety 
of specific implementations are desired. (These are called abstract data types.) While 
these data types specify a complete interface, implementations of some of their member 
functions are deferred. New data types can inherit the interface of an abstract data type 
and implement the deferred member functions. (The new type is called a specialization 
of the abstract data type.) With this approach, two desirable features are obtained. First, 
a foundation is provided on which new data types can be based. This lets the new data 
types reuse the pieces of code which could be implemented for the more general data 
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50 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

type. Furthermore, abstraction allows a piece of code to be written that uses only the 
interface of the abstract data type. This means that any data type which has that abstract 
data type as its foundation can be given to that piece of code. 

For example, in a parallel quantum chemistry program the data type MATRIX may 
exist in several different forms. It could be distributed across or replicated on the nodes 
of the system or, on some architectures, it could reside in shared memory. Although the 
underlying storage scheme for MATRIX is unspecified, the concept of a matrix is quite 
well defined. It should support matrix multiplication, diagonalization, and all of the 
other operations associated with matrices. Any user that used only these general ma
trix operations and was not concerned about the internal details of the matrix, such as 
whether or not it was distributed, could write code solely in terms of MATRIX which 
would not have to be reimplemented or even recompiled for each of the specialty ma
trices. 

Going back to the example of SCFWAVEFUNCTION , we find that abstraction could 
be useful here as well. Table Π shows the members of the WÀVEFUNCTION class. (Note 

Table Π: The WAVEFUNCTION data type. 

Protected Member Data: 
Type Name Description 
M O L E C U L E m o l e c u l e The nuclei and their positions. 
R E A L 
BOOLEAN 

Ε 

c u r r e n t 
The energy. 
True if Ε and c o e f are current. 

Protected Member Functions: 
Type Name Description 

upda te ( ) Recomputes the energy. This function is 
deferred, because WAVEFUNCTION doesn't 
know how to compute the energy. 

Public Member Functions: 
Type Name Description 
R E A L ene rgy ( ) Returns the energy of the molecule. 

geom (MATRIX) Set the geometry of m o l e c u l e to the given 
MATRIX object. 

that we have introduced a new access type in addition to "private" and "public". "Pro
tected" members can be used by classes which inherit from the class with protected 
members, but they are not accessible to other users of the class.) 

Specialization is the process of providing an implementation for an abstract data 
type. This is done by defining a data type that inherits the properties of an abstract data 
type and implements all of the member functions deferred by the abstract data type. 
Table ΙΠ shows the SCF specialization of the WAVEFUNCTION data type. Since S C F 
inherits the members of its base class, WAVEFUNCTION, it ends up with the same in
terface as the original SCFWAVEFUNCTION data type. Only now, part of its code has 
already been implemented by its base class. Furthermore, any code which must com-
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Table ΙΠ: The SCF data type. 

51 

Private Member Data: 
Type Name Description 
MATRIX c o e f The molecular orbital coefficients. 
Private Member Functions: 
Type Name Description 
— upda te ( ) Recomputes the energy. 
Public Member Functions: 
Type Name Description 
MATRIX c o e f f i c i e n t s ( ) Return a copy of coef . 

pute a molecular energy can be passed any WAVEFUNCTION class whether it be an SCF 
or an MP2 or any other class based on WAVEFUNCTION. 

The relationships between the classes are shown in Figure 1. This shows classes in 

Molecule 

ι m o l e c u l e 

Figure 1: The SCF class hierarchy. 

boxes and inheritance relationships as solid lines pointing from the specialized class to 
the abstract base class. The dashed lines represent containment, that is, data member
ship, and point to the contained data type. These lines are labeled with the name of the 
member. 

We can benefit from applying the process of abstraction and specialization at a 
higher level. Suppose we wanted to optimize the energy associated with our wavefunc
tion with respect to changes in the nuclear coordinates. The optimization package does 
not need to know whether or not we are computing the energy of a molecule or that 
the coordinates are nuclear coordinates. It only needs a function which, given a set of 
parameters, can compute the function's value and possibly its gradient. By basing the 
WAVEFUNCTION class on a FUNCTION class, we can make the optimization routines 
more general and reusable. 
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52 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Object Oriented Languages 

Object oriented programming techniques can be applied in nearly any language (7), but 
their use is greatly facilitated by the use of object oriented programming languages, and 
we will therefore restrict our attention to the use of object oriented languages, such as 
C++ (2). 

However, since performance is critical, we compared the efficiency of C++ with 
other programming languages traditionally used for scientific applications. We imple
mented a loop-unrolled, double precision, matrix multiply routine in FORTRAN, C, 
and C++. We compiled these test programs on an SGI Onyx workstation (150 Mhz 
R4400 CPU, 26 MFLOPS 100 χ 100 Linpack (3)) using the SGI FORTRAN, C, and 
C++ compilers. As shown in Table IV, all three produced nearly equal performance for 
100 χ 100 matrix multiplies—in the range 36-40 MFLOPS. Needless to say, carelessly 
using member functions can lead to dramatic reductions in the performance of C++ (as 
could overzealous use of function subroutines in FORTRAN). To demonstrate this, the 
final row in the table is for a C++ matrix multiply in which a member function is in
voked to access each matrix element, which reduces the performance to 3 MFLOPS. 
Clearly, excessive use of member function calls must be avoided and this is done in 
object oriented languages by carefully choosing the interface. In this case, the matrix 
interface has a member that is able to efficiently multiply two matrices. 

Table IV: Speed of a matrix multiply written in several languages. 

Language Rate (MFLOPS) 
FORTRAN 36-4 

C 39-7 
C++ 39-5 
c++a 3-1 

a A function call was used for each element access. 

The object oriented languages can be broadly grouped into weakly and strongly 
typed languages. The strongly typed languages are similar to FORTRAN and C, in 
which each datum is associated with a particular type such as i n t e g e r or f l o a t , 
while weakly typed languages do not permit types to be associated with symbols. Typ
ically, compilers for strongly typed languages have the advantage that they can ensure 
that only appropriate operations are performed on a given datum and they can more 
easily optimize the generated code. On the other hand weakly typed languages are 
more flexible. For quantum chemistry, which places a premium on execution speed, 
the strongly typed languages are the logical choice, at least for the compute intensive 
kernels. For this reason we will focus exclusively on the strongly typed languages. 

Several strongly typed object oriented languages exist, of which the most widely 
used is C++. Commercial as well as freely distributed C++ compilers are available for 
nearly all architectures, including massively parallel machines. This is one of the main 
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4. J A N S S E N E T A L . Parallel Ab Initio Programs 53 

reasons we have chosen C++ for the implementation of our massively parallel quan
tum chemistry program. Nevertheless C++ is not a perfect object oriented language; 
it provides only the basic machinery that permits object orientation. Other languages 
typically layer upon this foundation a set of commonly needed data types, such as sim
ple arrays, sets, strings, and even complex data types such as those needed to build a 
graphical user interface to an application. Furthermore, it is common for object ori
ented languages to provide built-in facilities such as a mechanism to automatically re
claim memory as soon as it is no longer needed. Also, methods that retrieve "metain-
formation" about a data type, such as its type name and relationships to other types, are 
provided by some languages. Another important facility that is frequently provided is 
persistence, that is, the ability to save an object to a disk or other device so that it can 
be restored by another program or perhaps moved to another processor. None of these 
data types or facilities are provided by C++. It does, however, provide the framework 
for the programmer to build these data types and facilities, but this task must be under
taken by the applications developer. This lack of basic support by C++ can seriously 
jeopardize code reuse since individual developers may use different approaches to pro
vide the functionality missing in C++. (Consult the appendix for a discussion of how 
we have implemented some of the facilities missing in C++.) 

These drawbacks, as well as other, more technical, problems with C++ raise the 
question of whether it is worthwhile learning a complex new language. However, in 
our case, implementing quantum chemistry codes on massively parallel machines and 
other parallel architectures requires a substantial rewrite of the codes and the object ori
ented approach is a particularly sensible way to deal with the complexity of developing 
software that is efficient on several different computer architectures. Furthermore, al
though C++ currently adds unnecessary complexity to object oriented programming, 
this situation is likely to be ameliorated in the future. New languages will come along, 
or other languages will become better accepted, or C++ itself will evolve to remedy its 
problems. Whatever language we program in ten years from now, it will very likely 
have object oriented features and will support the same abstractions we are developing 
now. Ultimately, it is the proper choice of abstractions, and not the choice of language, 
that is the key to successful object oriented design. 

The primary document for the C++ standard (2) can be consulted for more details. 

Applications to Ab Initio Chemistry 

We are in the process of applying object oriented design principles to our massively par
allel quantum chemistry (MPQC) codes which can perform low order ab initio compu
tations on medium sized biochemicals and portions of macromolecules with up to hun
dreds of atoms. MPQC can currently be used to compute SCF energies and gradients as 
well as second order M0ller Plesset (ΜΡ2) (4) and open-shell (ΟΡΤ2) (5) perturbation 
theory energies. Efficient internal coordinate optimization methods allow for the rapid 
determination of molecular geometries at the SCF level of theory. Since cutoffs are used 
to drastically reduce the number of integrals needed for the large systems we study, we 
have taken care to parallelize all of the 0(Njjasis) steps (matrix multiplication, diago
nalization, orthogonalization, etc.) to prevent these steps from becoming bottlenecks. 
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54 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Furthermore, Njfasis may be large compared to the amount of memory available on each 
processor, so we have the ability to distribute matrices among the nodes as described 
in (6). 

MPQC running on an Intel Paragon is being routinely used for chemical studies. Ta
ble V illustrates typical calculations and timings for a single SCF gradient calculation. 

Table V: Timings for SCF gradient calculations running on an Intel Paragon. 

Molecule Point Group Nbasis 1 »processor Time (hours) 
Methyl-a-cellobiose C i 480 120 2-83 
Methyl-a-cellobiose c, 480 240 1-50 
Methyl-a-cellobiose Ci 480 480 0-83 
Porphyrin 5 4 420 256 0-34 
Acetylaminofluorene C i 294 256 0-55 
Phthalocyanine D2h 970 512 1-05 

Object Oriented Design of M P Q C . A simplified view of a portion of the MPQC inher
itance hierarchy is shown in Figure 2. This is a more realistic reworking of the SCF hi

erarchy illustrated in Figure 1. Features include the use of the FUNCTION abstract class 
which maps a set of coordinates to the function's value (and possibly its gradient). A 
separate set of optimization classes can make use of any specialization of FUNCTION. 
The MOLECULARENERGY class is a specialization of FUNCTION (it happens to be an 

Figure 2: The MPQC inheritance hierarchy. 
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4. J A N S S E N E T A L . Parallel Ab Initio Programs 55 

abstract specialization) which interprets FUNCTION'S coordinates as the specification 
of a nuclear geometry and FUNCTION'S value as the energy of the molecule. Since there 
are many ways to specify a geometry and the actual computation of the energy is usu
ally done in terms of Cartesian coordinates, M O L E C U L A R E N E R G Y contains a class, 
M O L E C U L A R C O O R D I N A T E S , which is used to convert between the coordinates that 
are needed by F U N C T I O N and the Cartesian coordinates. Note that at this level, the 
M O L E C U L A R E N E R G Y class is completely generic to any method of calculating the 
molecular energies. For the case of ab initio methods, it is useful to create special
ization of the M O L E C U L A R E N E R G Y class, W A V E F U N C T I O N , which adds members to 
compute electron densities and wavefunction values at points in space. Finally, W A V E -

F U N C T I O N is specialized into a fully implemented class for each ab initio method such 
as SCF or MP2. The SCF specialization of W A V E F U N C T I O N contains objects such as 
the SCF coefficients (which are of type M A T R I X ) and an object to form the Fock matrix 
(which is of type F O R M F ) . The W A V E F U N C T I O N class has also been specialized to the 
MP2 class in Figure 2 which includes an SCF object to store the reference wavefunc
tion. 

An SCF object can be used to compute an energy or gradient. Since the SCF class 
is a specialization (via W A V E F U N C T I O N ) of the F U N C T I O N class, it is guaranteed to be 
compatible with the O P T I M I Z E class, shown in Figure 3, which can be used to optimize 
the SCF geometry. In practice, we use the Q U A S I N E W T O N specialization of O P T I M I Z E 

which would contain an SCF specialization of F U N C T I O N . 

Nothing specific to parallelism appears in Figures 2 and 3. This is precisely the goal 
of the object oriented approach; we want to hide the complexity of parallelism as much 
as possible. The core types of MPQC provide an adequate foundation for all computer 
architectures. To understand how parallelism fits into this scheme, we will look at the 
M A T R I X , F O R M F , and ΜΡ2 classes in more detail. 

The M A T R I X Class. Matrix operations are among the more common tasks of com
putational significance that a quantum chemistry application must perform. Thus it is 
desirable to develop highly optimized matrix classes for each computer architecture. In 
the object oriented approach, this is accomplished by defining an abstract class and a 
specialization of this class for each computer architecture, as shown in Figure 4. Unfor-

Figure 3: The O P T I M I Z E inheritance hierarchy. 
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. Matrix 

(shmMatrix) / \ (pistMatrix ) 

(LocalMatrix) (ReplicatedMatrix ) 

Figure 4: The MATRIX inheritance hierarchy. 

tunately, the existing object oriented matrix libraries are optimized for particular com
puter architectures. Our goal is to design a set of matrix operations for the abstract MA
TRIX class that is very general and will satisfy our needs for all architectures. We plan 
to support simple matrices that provide efficient matrix computations for uniprocessors, 
shared memory machines, clusters of processors with enough memory to store all ma
trices connected by a relatively slow network (workstations on an LAN), clusters of 
processors with enough memory to store all matrices and a fast interconnect network 
(a massively parallel machine such as the Intel Paragon), and clusters of machines that 
do not have enough memory to hold entire matrices (only a fast interconnect network 
would work well in this case). 

The general operations mentioned above define the interface of the abstract MA
TRIX class, a portion of which is outlined in Table VI. This table omits the standard 
linear algebra routines, such a matrix inversion, multiply, etc. that are also part of the 

Table VI: A portion of the MATRIX interface. 

Public Member Functions: 
Type Name Description 
M A T R I X copy( ) Return a copy of this matrix. 
— a s s i g n ( R E A L ) Assign all elements to the 

given number. 
— a s s i g n ( M A T R I X ) Assign to this matrix the 

given matrix. 
— accum ( M A T R I X ) Add to this matrix the given 

matrix. 
M A T R I X sum ( M A T R I X ) Return the sum of this and 

another matrix. 
— s e t ( I N T E G E R , I N T E G E R , R E A L ) Set an element of this matrix. 
R E A L ge t ( I N T E G E R , I N T E G E R ) Return an element of this 

matrix. 
— element_op ( E L E M E N T O P ) Perform the given operation 

on all elements of this matrix. 
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4. JANSSEN ET AL. Parallel Ab Initio Programs 57 

interface as well as other utility methods that implement automated memory manage
ment, persistence, and dynamic typing. 

Although the M A T R I X class is abstract, it can implement some of these members 
without limiting its generality. For example, the sum ( ) member is implemented in 
M A T R I X using the copy ( ) and accum ( ) members. The implementations of copy ( ) 
and accum ( ) are deferred to the specializations of M A T R I X , since they require spe
cific information about how the matrix elements are stored. An alternate choice would 
have been to implement accum ( ) in terms of and sum ( ) and a s s i g n ( ) ; however, 
this would result in the unnecessary creation of a temporary matrix. (Such considera
tions of storage and performance requirements are essential to developing classes for 
high performance applications.) Ideally, object oriented matrix classes should permit 
use of convenient member functions, such as sum ( ), while allowing access to more 
efficient members, such as accum ( ). 

A more detailed example of some of the trade-offs between efficiency and generality 
arises when deciding how to provide the user access to the elements of the M A T R I X ob
jects. Since some specializations of M A T R I X distribute elements among the processors, 
individual access to each element could be slow. Hence, the M A T R I X member functions 
ge t ( ) and s e t ( ) listed in Table VI will not alone be adequate. (We have included 
these functions since there are many cases where efficiency is not important and omis
sion of g e t and s e t would make the matrix package less flexible.) An alternative 
strategy to retrieving the individual matrix elements before an operation is to distribute 
the operation request to wherever the matrix elements are located. To this end another 
method, e lement .op ( ), has been added to the M A T R I X class. The e lement .op ( ) 
member takes as an argument an E L E M E N T O P object, which is capable of processing 
each of the elements in the matrix in an efficient manner. 

The use of the element_op ( ) member is illustrated in Figures 5 and 6 for the 
computation of the overlap matrix on three processors (one of which is the "host" that 
manages the parallel computation). In this example, the overlap matrix, S, is of type 

fs.element_op(op)Ί 

^Node \ j Node 2 

Figure 5: The first step in the overlap matrix computation. 

D I S T R I B U T E D M A T R I X and a piece of it, S i , resides on node 1 and the rest, S 2 , is stored 
on node 2. In the first step, shown in Figure 5, the host process creates the op object. 
The op object is of type O V E R L A P which is a specialization of E L E M E N T O P . This op 
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(Host) 

Ξ 
op.procèss( 

Node 1 

op.process( 

Node 2 

Figure 6: The second step in the overlap matrix computation. 

is then given as an argument to the element_op ( ) member. In the next step, shown in 
Figure 6, the op is broadcast to the nodes, using the persistence mechanism to duplicate 
this object. Upon receiving op, each node passes its locally held pieces of the overlap 
matrix to op, which fills in the values. The matrix classes allow the granularity of the 
pieces of the matrices to be chosen such that they make the procedure efficient, which 
in this case means that all basis functions in a shell must be grouped together. 

The F O R M F Class. Although most quantum chemical algorithms are formulated in 
terms of matrix equations, more specialized operations are required for their efficient 
computation, especially on multiprocessor computers. One example is the parallelized 
Fock matrix formation, where the two electron integrals and perhaps the F, H , and Ρ 
matrices are distributed. 

η 

Fpq = Hcore + Σ Prs(2{pq\rs) - {pr\qs)) 
rs 

This equation can be implemented in two ways; abstract operations could be developed 
for the M A T R I X class that can do this sort of contraction for the general case. A more 
efficient alternative is a class written to implement the Fock matrix formation, F O R M F , 

which is encapsulated within the SCF class (Figure 2). This class has specializations 
optimized for particular architectures, as shown in Figure 7. The latter approach is sim
pler and is currently being used in MPQC. Since the SCF object must first determine 
whether a local or distributed M A T R I X is actually being used for the density, some 
mechanism is needed to identify the matrix specialization (which may not be known 
until run time). Our dynamic typing system makes this possible with C++ (see the ap
pendix); other object oriented languages support this directly. The appropriate special
ization of F O R M F is created which knows the specific form of the matrix being used 
and thus it can access the data in the most efficient way. This approach is an example 
where a localized breakdown of abstraction is required to yield optimal efficiency from 
the machine. 

The M P 2 Class. To achieve the maximum efficiency, we must accept the fact that cer
tain wavefunctions may have very different implementations for different architectures. 
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Figure 7: The F O R M F inheritance hierarchy. 

This is the case with our MP2 routines, because the entire algorithm has been reorga
nized to minimize memory use and communications. In this case the inheritance hierar
chy includes a completely separate specialization of W A V E F U N C T I O N to support MP2 
on parallel architectures. (Figure 8.) 

Conclusions 

The object oriented approach can be used to manage the complexity of large software 
systems. Object oriented languages allow programmers to encapsulate, abstract, and 
specialize data types. These facilities allow code to be written that is easier to reuse and 
more general. When it is not possible to obtain satisfactory performance out of general 
code, object oriented programming methodology allows programmers to isolate neces
sary machine specific code as much as possible from the rest of the application. These 
features make object oriented programming a particularly good way to implement com
plex parallel quantum chemistry programs. 

A continuing hindrance to the field of ab initio quantum chemistry is that nearly all 
of the software infrastructure is reimplemented in each new quantum chemistry project. 
As a result, there are fundamental incompatibilities in the quantum chemistry software 
developed by different research groups. A central goal of this research is to determine 
the feasibility of a set of object oriented building blocks for quantum chemical soft
ware. If such object libraries can be made sufficiently versatile and efficient on a wide 
range of computer architectures, they should point the way towards a different future for 
quantum chemical methods development. New theoretical methods could be rapidly 
assembled from available classes and new developers could fully take advantage of an 
existing legacy of quantum chemical software. 

Figure 8: The MP2 inheritance hierarchy. 
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Appendix 

As previously stated, the M P Q C program is implemented in C++, which omits sev
eral useful programming features that are common in other object oriented program
ming languages. Fortunately, C++ is flexible enough to allow inclusion of most of these 
features with a modest amount of additional programming. Some of the missing fea
tures that we have implemented for use in M P Q C are automated memory management, 
dynamic typing, and persistence. These utility classes are available from the authors 
(email janssen@netcom.com). 

Memory Management C++ was designed as a superset of its predecessor, C, and uses 
C's memory management mechanism. This involves explicit function calls to allocate 
and release memory. It is frequently the case that a single piece of memory is shared 
by many objects, to avoid allocating extra storage and unnecessarily copying the data. 
However, it then becomes difficult to determine when the memory is no longer in use 
and should be released to the system so it can be reused. Releasing the memory too soon 
typically results in difficult-to-find errors in the program; not releasing memory at all 
wastes system resources. Several other programming languages use "garbage collec
tion" techniques to reclaim unused memory without programmer intervention. 

Our approach to memory management in C++ allows the programmer to choose be
tween the standard C-style memory allocation techniques and a "reference counting" 
mechanism for each object created. In the latter method an integer is stored with the 
object that keeps track of how many references that there are to an object. This count is 
maintained by a "smart pointer" to the object which is implemented as a class that en
capsulates a simple C-style pointer to the object. The smart pointer can be used just like 
a simple pointer. When an operation that eliminates a reference to an object is executed, 
the smart pointer will detect this and decrement the reference count. When the count 
becomes zero, the object is released. When a new reference to an object is created by a 
smart pointer the reference count is incremented. Smart pointers can be used in place 
of simple pointers without significant performance impact for big objects such as ma
trices. For small data, such as the elements of a matrix, the standard C-style pointers 
are used. 

Dynamic Typing. Consider the accum ( M A T R I X ) member of the M A T R I X class (Ta
ble VI). This is a deferred member function so it is implemented in a specialization of 
M A T R I X . If the accum ( M A T R I X ) member of an D I S T M A T R I X (Figure 4) object is 
called, then it will be passed an argument of type M A T R I X . This means it could only use 
the functions provided in the interface of M A T R I X to perform the accumulation. This 
is not very efficient, but to improve the performance the accum ( MA TR IX ) member 
function of D I S T M A T R I X would need to know which particular M A T R I X specializa
tion it has been passed. 

Dynamic typing makes it possible to determine the specialized type of an object for 
which only the abstract type is known. Thus, the accum ( M A T R I X ) member function 
could find out if the argument was actually a D I S T M A T R I X object. It could then do the 
accumulation in the most efficient way possible. 
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Persistence. Persistence is broadly interpreted to mean capabilities ranging from sav
ing objects to a disk so that they can be reconstructed in the future to sending objects 
across a network so they can reside on a different node. Both capabilities are very useful 
in a parallel quantum chemistry code. 

We have implemented a persistence mechanism that is fully integrated with the ob
ject oriented approach. A l l classes with persistence inherit from the S A V A B L E S T A T E 

class which provides a deferred member function, save_s t a t e ( S T A T E O U T ), that is 
called with a argument that is of type S T A T E O U T . Each specialization of S A V A B L E -

S T A T E implements s a v e . s t a t e ( S T A T E O U T ) SO that it gives to the S T A T E O U T ob
ject each piece of data that is needed to reconstruct the object being saved. Different 
specializations of S T A T E O U T object are used to dispose of the data in different ways. 
For example, the S T A T E O U T B I N F I L E specialization writes each piece of data to a bi
nary file in an architecture independent format. 

Reconstruction of the object proceeds by giving an object's constructor (a special 
member function that initializes a new object) an object of type S T A T E I N . For each 
S T A T E O U T there is a corresponding S T A T E I N specialization that can restore data saved 
by the S T A T E O U T specialization. Because only the abstract type of member objects 
might be known, it is necessary to store the specialization of the object with the object so 
that the correct specialization can be restored. The dynamic typing mechanism provides 
this capacity. After the restoration is complete, we have an object that has exactly the 
same properties as the object that existed at the time its save .s t a t e ( ) member was 
called. 
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Chapter 5 

Ab Initio Quantum Chemistry 
on a Workstation Cluster 

David P. Turner1, Gary W. Trucks2, and Michael J. Frisch2 

1Scientific Computing Associates, 265 Church Street, 
New Haven, CT 06510-7010 

2Lorentzian, Inc., 140 Washington Avenue, North Haven, CT 06473 

Recent advances in workstation performance and parallel 
programming environments have produced a new computing option 
for ab initio electronic structure theory calculations: parallel 
processing on clusters of workstations. This model, if successfully 
applied to the most commonly-used algorithms, promises to provide a 
larger number of researchers quicker time to solution, the ability to 
study larger chemical systems, and the availability of vast amounts of 
cost-effective computing resources. In this chapter, we will describe 
our efforts parallelizing the Hartree-Fock direct SCF energy, gradient, 
and second derivative evaluations in the widely-used Gaussian ab 
initio code system, using the Linda parallel programming model. We 
will address the relevant issues of the cluster programming model, 
and will present our results from a network of six high- performance 
Unix workstations. We will also briefly discuss our plans for 
extending the parallel performance to a larger number of processes. 

Numerical computation is an important component of modern quantum chemistry, 
both in private industry as well as in academic research. Ab initio electronic 
structure theory has proven to be a valuable tool for determining structures, 
thermochemistry, characterizing spectra, predicting reaction mechanisms and rates, 
and determining parameters for more approximate methods such as molecular 
mechanics. In particular, the Gaussian series of programs1 has been established as 
the most widely used ab initio package. This is due to its constantiy improving 
performance and its open software architecture, which allows the newest models to 
be easily incorporated. 

In spite of recent dramatic gains in Gaussian performance, many researchers are 
still limited both in the size of the molecular systems they can study and in the extent 
of analysis possible. The typical researcher may have two computing options 
available, each with its own limitations. The first option is the traditional 
supercomputing center. While memory capacity and CPU performance are often 
quite dramatic, most centers are heavily subscribed. In practice, it may be 
impossible to get the necessary resource allocations to thoroughly study the chemical 
system of interest. The second option is the researcher's own workstation. Here the 

0097-6156/95/0592-0062$12.00/0 
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5. TURNER ET AL. Ab Initio Quantum Chemistry on a Workstation Cluster 63 

situation is reversed: C P U performance and memory capacity are much more 
modest, but their availability is essentially unlimited. Typically, the researcher's 
workstation is but one of many located on a local area network. The primary 
objective of this work has been to investigate the creation of a third option, a parallel 
version of Gaussian that can run on a network of workstations. This objective was 
constrained by the desire to leave intact the underlying structure (and portability) of 
Gaussian. 

The first step of any code optimization effort, including parallelization, is to 
identify those operations that dominate the quantity being optimized, whether it is 
C P U time, memory usage, or I/O 2 . For Hartree-Fock theory applied to large 
chemical systems, the limiting calculation in direct self-consistent field (SCF) 
methods is the generation and consumption of two-electron repulsion integrals3. 
Gaussian implements this using the Prism algorithm4 , 5. Although this is the fastest 
known algorithm for two-electron integral evaluation, it can still comprise 
approximately 90% of the required CPU time for a typical single-point energy or 
gradient calculation. It is therefore an obvious candidate for parallelization. 
Another area that can use enormous amounts of CPU time is the evaluation of 
Hartree-Fock analytic second derivatives. In Gaussian, a large part of this work is 
accomplished by a package called ChewER, which implements the Head-Gordon-
Pople (HGP) algorithm for Raffenetti integral combinations6. The primary output of 
both Prism and ChewER is a set of Fock matrices. Each element of each matrix is 
the sum of many two-electron integral terms. This summation can be used as the 
basis of work partitioning among multiple processes. 

Just as Gaussian is a leader in the field of ab initio computations, Linda is a 
leader in parallel programming. It has achieved this position through its simple 
programming model, portability, debugging tools, and of course, performance. It 
provides a framework for developing and debugging a parallel application on a 
single processor, and then using the same source code to generate a version suitable 
for a multiprocessor (shared- or distributed-memory) or a network of workstations. 
For these reasons, Linda was chosen as the parallel programming tool for this work. 

There have been several attempts to parallelize electronic structure codes in the 
past, some of which have yielded good parallel speedup 7 1 2. However, these efforts 
have primarily started from academic programs and lack commercial support for end 
users. Many of these codes incorporate a limited range of models and do not 
necessarily use the most recent and effective algorithms. The work reported herein 
differs from these previous works in its emphasis on using two state-of-the-art 
commercial software packages, Gaussian and Network Linda, and in its focus on the 
actual results an end-user would receive from such a combination. For each test case 
that we benchmarked, we have presented not only speedups for the computational 
kernels that were parallelized, but also for the entire Gaussian calculation, which are 
much more relevant to a typical end-user. 

The aim of this research was to exploit parallelism on small, homogeneous 
networks. Because of this, it was decided to base the Linda version on the existing 
shared-memory multiprocessor version of Gaussian. As described below, this 
approach results in coarse-grain parallelism, with a large initial communication cost, 
no communication during parallel execution, and a smaller communication 
requirement following the parallel section. The large granularity suggested that a 
network implementation was practical. The work allocation of this method provides 
an equal amount of work for all processes, providing good load balancing for 
identical processors. 

In the following sections, we provide technical background, describe the parallel 
implementation, and present and discuss performance results. Additionally, we 
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64 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

identify areas for possible future parallelization. Overall, our work clearly 
establishes the feasibility of developing a network-parallel version of Gaussian. 

Background 

Gaussian Architecture. The Unix version of Gaussian is actually a sequence of 
executable programs called links. The first link (LO) is responsible for reading the 
user's input file and determining the sequence of links necessary to produce the 
desired results. Each link is responsible for initiating the next link in the sequence, 
using the exec ( ) system call. 

There are over a dozen links which can possibly invoke Prism and/or ChewER. 
For this project, the following links were chosen for their frequent and CPU-
intensive use of these two algorithms: 
• L502 closed and open shell SCF solution; 
• L703 two-electron integral first or second derivative evaluation; 

L1002 Coupled-Perturbed Hartree-Fock (CPHF) solution and 
contribution of coefficient derivatives to Hartree-Fock second 
derivatives; and 

• L1110 two-electron contribution to Fock matrix derivatives with 
respect to nuclear coordinates. 

Of the remaining links that use these two packages for integral evaluation, most 
consume little CPU time, or are infrequently used. A few of them were successfully 
parallelized to test the robustness of the method, but no performance measurements 
were made for them. 

Shared-Memory Gaussian. The most recent public release of Gaussian (Gaussian 
92) includes versions of Prism and ChewER intended for shared-memory 
multiprocessors13. Most of the logic which implements this parallelism is located in 
two setup routines called PrsmSu and CherSu. These routines are responsible for 
process creation and synchronization (only required at termination). 

Process creation is implemented using the Unix f o r k ( ) system call. This 
gives each child process private copies of all local variables, COMMON blocks, and 
scalar arguments. The array arguments reside in shared memory, and each child 
process gets free access to all the arrays. For input arrays, no special care is needed. 
For arrays that are modified (either scratch arrays or output arrays), the parent 
allocates space from its shared-memory workspace for each of its children, and 
initializes the arrays appropriately. It should also be noted that the parent process 
calls Prism (or ChewER) after creating the child processes; that is, the parent also 
functions as a worker, participating fully in computing the solution. 

Work allocation is done in parallel but is completely deterministic. In the Prism 
routine P i c k s 4 , each worker determines which batch of shell quartets it will 
evaluate. In the current implementation, this is a completely redundant and non-
trivial computation, comprising from 3% to 4% of the overall Prism execution time. 
A similar approach is taken by the ChewER routine ChunkR. The effect of this 
redundant work is clearly seen in the results presented later. 

Using the shell quartets selected by PickS4 (or ChunkR), each worker 
computes a partial sum for every element of every Fock output matrix. After 
completing their calculations, the children exit, leaving their result matrices in 
shared memory. When the parent has finished its calculation, it calls wait ( ) for 
each child. Then it sums the matrices left behind by the children into its own result 
matrices. These matrices are then returned to the calling Gaussian link. 

The above strategy has many benefits. This single approach allows effective 
parallelism whether computing a single Fock matrix (e.g., during the SCF solution), 
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or whether computing many matrices (e.g., during the CPHF phase of the Hartree-
Fock second derivative evaluation, where a separate matrix for each perturbation 
must be constructed). While this method requires more memory than a sub-blocking 
technique, it avoids the redundant integral evaluation or extra communication (and 
therefore synchronization) that would be required in a sub-blocking scheme (due to 
the random nature of a quartet's contribution to a Fock matrix). 

Linda Fundamentals. Because Linda has been extensively discussed in many 
previous publications14"20, only its relevant features are presented here. Linda is 
based on a communications abstraction called tuple space (TS). To the application 
program, TS appears as a content-addressable virtual shared memory containing data 
objects known as tuples. A tuple is a collection of typed fields; each field can be a 
literal value or the name of a variable. Tuples are deposited into TS with the out 
operation, and are withdrawn or read with either the i n or the rd operation. These 
two input operations differ in that i n removes the tuple from TS, whereas rd returns 
a copy of the tuple, leaving the original in TS. Both i n and rd are blocking; that is, 
if the desired tuple is not in TS, the requesting process will be suspended until an 
appropriate tuple becomes available. The final operation of interest is eval. While 
eval is formally defined in terms of TS operations, for our purpose it may be 
thought of as creating a concurrently executing process. An eval requires the name 
of a subroutine, to be used as the entry point of the new process, and a short list of 
simple arguments to be provided to that subroutine. 

The Linda model is independent of the underlying hardware. In order to run in 
parallel on a network of Unix workstations, the Linda utility nt s net is used. This 
program is responsible for scheduling and initiating the Linda processes on the 
desired remote nodes. Its single required argument is the name of the parent process; 
all other necessary information may be provided through configuration files. 

Shared Memory vs. Linda. The fundamental difference between the current 
Gaussian parallel model and the Linda model is the difference in semantics between 
f ork ( ) and eval. The processes created by f ork ( ) inherit all current state 
information from the parent, i.e., they are copies of the parent as it existed at the time 
of the fork () . In contrast, the processes created by eval are copies of the parent 
as it initially existed. This semantic difference is required in order to support a 
common programming environment across shared- and distributed-memory 
computers as well as on networks of workstations being used as parallel computers. 
The semantics of eval require that the child processes explicitly restore all state 
information after they are created. Linda allows a small number of simple data items 
to be passed in the argument list of the created processes; all other data must be 
passed through TS. This state information includes all shared-memory arrays, all 
COMMON blocks, and possibly, local static data. 

Implementation 

Analysis Of State Information. In evaluating the shared-memory version of Prism, 
two primary issues had to be addressed: array existence and array reference. While 
studying the dynamic array allocation in routines that call Prism, it was noted that 
many arrays were equivalenced to one another, or equivalenced to a local (scalar) 
scratch variable. The distinct existence of any particular array depended on which 
link was being considered and on user-specified options defining the type of results 
desired. Understanding all the permutations of links and options was crucial to 
developing a robust implementation. 
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The second issue arose in studying actual array references in Prism and in the 
routines called by Prism. It was noted that under certain combinations of options, 
many arrays were never referenced. This suggested that these arrays would not have 
to be passed through TS for certain types of jobs. This was the only effort made to 
reduce the amount of data passed through TS. Similar conclusions were reached 
while studying ChewER. 

The other types of state information considered were COMMON blocks and local 
static data. It was determined that Prism needed six COMMON blocks initialized, 
while ChewER required 13. A thorough study of all the routines possibly called by 
Prism and ChewER showed several contained local static data, in the form of local 
variables appearing in SAVE statements. Many of these routines were low-level 
general-purpose Gaussian support routines. Each routine was considered 
individually, and it was determined that the effect of the variables reverting to their 
initial values was benign. Thus, there was no need to pass these variables through 
TS. 

Code Structure. The above analysis led to an implementation that required only 
minor changes to the existing Gaussian code. A new version of the Prism setup 
routine PrsmSu was written. It receives over 100 arguments destined for Prism, and 
parcels them out as follows. Thirty integer scalars are stored into a local integer 
array (INTARY), which is then deposited into TS. The 6 required COMMON blocks 
are then deposited into TS. Depending on various problem-dependent options, as 
many as 45 arrays are then deposited. 

Next, PrsmSu starts the parallel processes using eval. The entry point for 
each of these concurrent processes is a new routine named PrsmEv, described 
below; its arguments are ten logical scalars and two integer scalars. Following the 
initiation of the processes, PrsmSu calls Prism, thus participating in the parallel 
solution. When this invocation of Prism returns, PrsmSu gathers the results from its 
parallel processes, using the i n operation. Each result array is then added into the 
corresponding array in PrsmSu. Finally, PrsmSu uses i n to remove any data still 
in TS; this is merely a cleanup step to prepare TS for its next use. 

The routine PrsmEv behaves like a MAIN routine in standard Fortran, except 
that it receives some arguments. It is responsible for getting all the state information 
from TS, allocating memory, calling Prism, and depositing the results into TS. First, 
it uses rd to get a copy of INTARY, the elements of which are stored into local 
scalar variables. Next, it uses rd to get copies of the COMMON blocks. At this point 
PrsmEv has all the control options required to calculate the number of required 
arrays (both input and output) and their sizes, so it can use malloc ( ) to acquire the 
memory needed to hold them. It then uses rd to fill the input arrays, and initializes 
the output arrays to zero. This completes the necessary initialization, and Prism is 
called. When Prism returns, PrsmEv deposits the result arrays into TS, calls 
f ree ( ) to release its memory, and exits. 

The implementation for ChewER was constructed along similar lines, although 
the number and sizes of the various arguments differ significantly. 
One final implementation detail should be mentioned. A single Gaussian run can 
execute dozens of links, possibly invoking several that have been parallelized. 
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Because each link is built as a stand-alone executable program, this implies (for a 
network version) that ntsnet would have to be executed several times. That is, 
ntsnet cannot initiate the Gaussian execution chain; instead, ntsnet must be 
initiated as part of the chain. This was accomplished by writing a C program called 
lnklnd, which is symbolically linked to the names of the parallelized Gaussian 
links. This program calls system ( ) to create a shell in which ntsnet can run the 
actual parallelized link. The call to system ( ) does not return until the shell exits, 
i.e., until ntsnet has terminated. At that time, lnklnd initiates the next link in the 
execution chain. 

Parallel Results 

Procedure. Timing runs were conducted using three variations of a test case from 
the Gaussian test suite. The molecule considered was triamino-trinitro-benzene 
(TATB), C6H6N606. With an appropriate choice of basis set, this job is not 
especially large by Gaussian standards, but it does represent a reasonable lower 
bound to problems that are large enough to warrant parallel processing. A l l tests 
were closed-shell calculations using direct methods. 

Speedups and efficiencies were calculated as follows: 

s = t p / t i 
e = (s /p)* 100 

where s is speedup, e is efficiency, t p is elapsed time for the parallel calculation, ti is 
the elapsed time for the sequential calculation, and ρ is the number of processes. 
The single-process jobs were run using the standard (sequential) version of 
Gaussian, modified by the addition of the timing calls mentioned below. 

Elapsed wallclock time (in seconds) was measured in two different places. 
First, library calls were added to PrsmSu and Cher Su to record the elapsed 
wallclock time of the parallelized Prism and ChewER, including all process 
initiation and data communication costs. These times were used to calculate 
speedups and efficiencies for the parallelized pieces of code. Second, the Unix 
utility date was used before and after the Gaussian execution, to measure total 
elapsed wallclock time for the entire job. This includes both parallel and sequential 
time, including I/O and program (link) initiation times. Speedups and efficiencies 
for the complete start-to-finish jobs were then computed. Detailed tabular results 
may be found in the Appendix; below we present our results graphically. 

Development and testing were initially performed on a Silicon Graphics Iris 
4D/320GTX, a two-CPU shared-memory multiprocessor. The same program was 
then recompiled with Network Linda and timed on an ethernet-connected network of 
six IBM RS6000 Model 560 workstations. In this environment, all workstations 
were dedicated during the timing runs, although the network was not electrically 
isolated. 
It should be noted that all testing was performed using the most recent development 
version of Gaussian, and should not be taken as indicative of the performance of 
Gaussian 92 as it is distributed. 
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Test Case 1. For the first test, a Hartree-Fock single-point energy calculation on 
TATB was performed using the basis set 6-31G** (300 basis functions). The SCF 
solution was produced after eight iterations, i.e., PrsmSu was called eight times. 
The amount of data transferred through TS varied from 2 M B to 4 M B for each 
iteration. 

Results for Test Case 1 

3000 

2500 + 

§ 2000 

S 1500 

Ί3 

ce 
1000 J. 

500 -L 

-Β—L502 Time 
-A—Job Time 
-•—L502 Speedup 
-A—Job Speedup 

Ideal Speedup 

τ 6 

4-5 

4 α 

Pu 
3 ce 

Number of Workstations 
In this test case, link L502 is invoking Prism in order to form the Fock matrix 

during the SCF solution phase. Much of the drop in efficiency within Prism can be 
attributed to the redundant work in PickS4. The far greater decline in efficiency 
for the entire job is a combination of the redundant work, the remaining sequential 
calculations in link L502 and other links (especially link L401, which generates the 
initial guess of the density matrix), and poor network configuration. In particular, 
the residual sequential time increased from 260 seconds with one process to 358 
seconds with six processes. This increase of almost 100 seconds is caused by slow 
n t s n e t initialization on the workstation cluster being used. Subsequent testing has 
revealed a faulty automount mechanism on the particular workstation used as the 
master node. The system administrators for the network have not yet satisfactorily 
resolved this problem, so we have been unable to re-run our tests in an optimized 
network setting. However, we believe that most of the wasted time can be recovered 
through appropriate network configuration and tuning. In a feasibility study such as 
this one, we did not believe it necessary to pursue such tuning. Moreover, since this 
type of overhead is independent of problem size, it will be less significant for 
production-size calculations. 
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Test Case 2. The second test was a Hartree-Fock gradient calculation on TATB, 
also using the 6-31G** basis set. The SCF solution required 16 iterations to 
converge, due to the higher accuracy required by the subsequent gradient calculation. 
This test required between 2 M B and 4 M B of data to be passed through TS for each 
invocation of Prism. 

Here we see higher efficiencies for link L502 than in the previous test case. 
This is due to scaling effects; although the basis set contained the same number of 
functions, the higher accuracy necessary for convergence required more integrals to 
be computed. The effect of the redundant work in PickS4 is still present, but has 
less impact. For link L703, which here is invoking Prism in order to evaluate first 
derivatives, there is essentially no sequential calculation present, although there is 
still the redundant work in P i c k s4. The decline in Job efficiencies is due to the 
same causes as in the first test case, with the added (artificially high) cost of 
initializing n t s n e t for both link L502 and link L703. 
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Test Case 3. The final test was a Hartree-Fock frequency calculation on TATB, this 
time using the 3-21G basis set (174 basis functions). The smaller basis set was 
chosen to allow the single-process run to complete in a reasonable amount of time; 
using the full 6-31G** basis, the single-process job would have required about two 
and one-half days of CPU time. While jobs of this magnitude are not unusual in 
Gaussian production environments, such resources were not available for this study. 
Unfortunately, the choice of the smaller basis has the undesirable effect of reducing 
the parallelizable computation. As with the previous test, link L502 took 16 
iterations to converge to the SCF solution. The amount of data passed through TS 
varied widely, from around 800 K B (for the smallest L502 Prism iterations) to just 
over 60 M B (for the largest LI002 ChewER iterations). Due to the complexity of 
this test case, we shall present the speedup results separately from the elapsed time 
results. 

Speedups for Test Case 3 

Number of Workstations 

Comparing link L502 efficiencies with the previous test, we see the effect of the 
smaller basis. Link L703 (here evaluating second derivatives) still performs well, 
showing less sensitivity to basis set selection. This test case includes two additional 
parallelized links. Link LI 110 performs well; it accomplishes more work in parallel 
than L502, computing integral derivatives and their contributions to 12 Fock 
matrices. As with all the other Prism links, LI 110 suffers from the redundant work 
in P i c k s 4 . Link LI002 invokes ChewER to produce integral derivatives for the 
CPHF portion of the Fock matrix derivative calculation. The efficiencies for 
ChewER are good. They suffer from the redundant work of ChunkR, but should 
scale better than Prism because of the larger number of calculations being done in 
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parallel. The Job efficiencies for this test are further reduced by the need for four 
invocations of n t s n e t . 

It is useful to look at the elapsed time results for this test case in a slightly 
different form. The following graph summarizes the elapsed time data. 

With one process, the elapsed time for the entire job was 14278 seconds; with 
six processes, the elapsed time was 5140 seconds, yielding a job efficiency of 
46.3%. It is obvious that in the sequential calculation, the execution time is 
dominated by the CPHF (LI002) calculation. However, with six processes, the 
CPHF time is essentially the same as the unparallelized time. This suggests that 
future efforts need to focus on additional parallelization as well as on improving the 
existing parallel performance. 

Future Work 

In addition to constructing an experimental network-parallel Gaussian and producing 
the timing results presented above, we also conducted a number of profiling studies 
to identify areas for future parallelization efforts. These studies identified a number 
of matrix arithmetic operations which need to be parallelized. For example, there is 
a matrix diagonalization following each Prism invocation during the SCF iteration. 
Furthermore, there are numerous matrix multiplication routines which are heavily 
used. Some of these are invoked with a large number of (relatively) small but 
independent matrices; others are invoked with a small number of very large matrices. 
Appropriate strategies will have to be employed depending on the granularity of the 
particular operation under consideration. 

Profiling was also performed on two of the more accurate (and expensive) post-
SCF methods available in Gaussian. The results for direct and semi-direct MP2 and 
semi-direct QCISD(T) were consistent with those above, indicating a need to 
parallelize basic matrix operations such as multiplication. However, the situation 
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with these algorithms is complicated by the fact that they are disk-based algorithms, 
due to the enormous size of the matrices involved. However, since the aggregate 
memory available on a network is often far larger than that on a single machine, it 
may be possible to reduce the I/O in a parallel version. Even so, it will still be 
necessary to exercise care in implementing these matrix operations to avoid any I/O 
bottleneck. 

Since the completion of this work, we have had an opportunity to experiment 
with some extensions that fall beyond the scope of our original intentions. 
Specifically, we have applied the parallel model used for Prism and ChewER to 
Gaussian's density functional theory (DFT) model. Also, we have experimented 
with a "server" version of the parallel model in an attempt to reduce startup costs. 
Preliminary results from both of these efforts look promising, and we hope to report 
more fully on them in the future. 

Conclusions 

This work has clearly demonstrated the feasibility of developing a version of 
Gaussian capable of significant parallel speedups on a network of high-performance 
workstations. By using the Linda parallel programming environment, development 
and debugging efforts were minimized, while the underlying portability and 
performance of Gaussian were maintained. Potential obstacles to increased parallel 
performance were identified. Some minor tuning and implementation issues were 
also identified; these need to be resolved in order to fully exploit the currently 
available parallelism. 
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Appendix 

In the tables below, ρ is the number of processes, t is the measured elapsed 
wallclock time in seconds, s is the computed speedup, and e is the computed 
efficiency. 

Results for Test Case 1 

Prism (L502) Job 

Ρ t s e t s e 
1 2739 2999 

2 1409 1.94 97.2 1719 1.74 87.2 

3 977 2.80 93.4 1294 2.32 77.3 

4 771 3.55 88.8 1104 2.72 67.9 

5 653 4.19 83.9 1009 2.97 59.4 

6 580 4.72 78.7 938 3.20 53.3 

Results for Test Case 2 

Prism (L502) Prism (L703) Job 

p t s e t s e t s e 

1 6507 2565 9541 

2 3325 1.96 97.8 1292 1.99 99.3 5162 1.85 92.4 

3 2288 2.84 94.8 874 2.93 97.8 3727 2.56 85.3 

4 1801 3.61 90.3 663 3.87 96.7 3060 3.12 77.9 

5 1516 4.29 85.8 544 4.72 94.3 2699 3.54 70.7 

6 1327 4.90 81.7 465 5.52 91.9 2439 3.91 65.2 
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Results for Test Case 3 

Prism (L502) Prism (L703) Prism ( L U 10) 

Ρ t s e t s e t s e 

1 713 1326 1378 

2 399 1.79 89.3 680 1.95 97.5 726 1.90 94.9 

3 286 2.49 83.1 455 2.91 97.1 510 2.70 90.1 

4 245 2.91 72.8 350 3.79 94.7 408 3.38 84.4 

5 222 3.21 64.2 280 4.74 94.7 352 3.91 78.3 

6 219 3.26 54.3 240 5.53 92.1 307 4.49 74.8 

ChewER (L1002) Job 

Ρ t s e t s e 
1 9243 14278 

2 4783 1.93 96.6 8234 1.73 86.7 
3 3364 2.75 91.6 6323 2.26 75.3 
4 2755 3.35 83.9 5587 2.56 63.9 

5 2480 3.73 74.5 5357 2.67 53.3 

6 2204 4.19 69.9 5140 2.78 46.3 

RECEIVED November 15,1994 
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Chapter 6 

The Parallelization of a General Ab Initio 
Multireference Configuration Interaction 

Program 
The C O L U M B U S Program System 

Hans Lischka 1 , Holger Dachsel 1, Ron Shepard2, and Robert J . Harrison 3 

1Institut für Theoretische Chemie und Strahlenchemie, Universität Wien, 
A-1090 Vienna, Austria 

2Argonne National Laboratory, Argonne, IL 60439 
3Pacific Northwest Laboratory, Richland, WA 99352 

A massively parallel version of the diagonalization section of the the 
COLUMBUS MRSDCI program system is reported. Coarse grain 
parallelization is performed at the topmost level of the program by 
means of the segmentation of the trial and resulting update vectors of 
the iterative Davidson scheme. Message passing based on the portable 
toolkit TCGMSG and the global array tools are used for communication 
between processors. Test calculations with CI dimensions of more than 
2.5 million were carried out on the Intel Touchstone Delta with a 
parallel efficiency of more than 90% on 320 processors. An outline of 
the parallelization of the entire program system is also given. 

Parallel computing is one of the great challenges in the computationally oriented 
sciences. It is of particular importance in Quantum Chemistry since practically all 
computational methods are extremely time corisuming if realistic simulations of 
molecules are attempted. Starting with the pioneering work by Clementi and coworkers 
on "loosely coupled array of processors (LCAP)" (1) several investigations on the 
parallelization of SCF programs have been reported (2-11). In addition, efforts to 
parallelize electron correlation methods like M0ller-Plesset Second-Order Perturbation 
Theory (12), Coupled-Cluster theory (13,14) and full CI (15,16) have been undertaken 
as well. For reviews on the use massively parallel computers in Quantum Chemistry see 
e.g. (17,18). 
Because of its simplicity, the direct SCF approach is most promising with respect to 
parallelization. The accuracy of the SCF method is sufficient for many standard 
situations in chemistry. However, if one wants to achieve higher precision and/or more 
general applicability electron correlation methods have to be used. Here, the situation is 
more complex since, depending on the case, at least a partial transformation of the two-
electron integrals from the A O into the M O basis has to be carried out One of the most 
complicated, but also one of the most general methods is the multi-reference single-
and double-excitation configuration interaction (MRSDCI) approach. It is our aim to 

0097~6156/95/0592-0075$12.00/0 
© 1995 American Chemical Society 
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develop a portable, massively parallel MRSDCI program on the basis of the 
COLUMBUS program system (19,20). Γη our previous investigation (21) we had 
shown that via coarse grain parallelization and message-passing based on the portable 
program package TCGMSG (22) developed by one of us (RJH) the diagonalization 
step can be very well parallelized. This program version was working on a variety of 
parallel computers, both shared memory (Alliant FX/2800, Cray Y - M P , Convex C2) 
and distributed memory (iPSC/860). Calculations with up to 8 processors were 
performed. The most severe bottlenecks of that version were located in the managment 
of the data files (mainly the two-electron integrals and the CI- and other expansion 
vectors) because of the restrictions inherent in the message-passing model. In order to 
improve this situation we have made use of the recently developed global-array tools 
(23) (see below). With these tools and introducing other enhancements (like virtual 
disks and an improved dynamic load balancing scheme) we are now in the position to 
use efficiently more than 300 processors on the Intel Touchstone Delta. It is the 
purpose of this communication to report in more detail on our achievments and to give 
an outline of our plans concerning the parallelization of the entire program system. 

Review of our Previous Work 

The COLUMBUS program system (19,20) is a collection of Fortran programs for 
performing general ab initio MRSDCI calculations and is based on the Graphical 
Unitary Group Approach (24,25). For accurate, large scale MRSDCI calculations the 
computationally most demanding section is the diagonalization of the matrix 
representation of the hamiltonian operator in the basis of the configuration state 
functions (CSFs). Expansion lengths of 1 - 10 million are now becoming routine with 
the COLUMBUS program system. The iterative Davidson diagonalization method (26) 
is used to determine the appropriate eigenvectors and eigenvalues. In this scheme, the 
most important step by far is the computation of a matrix-vector product w, = Hv, (w, 
is called the resulting product vector) of the hamiltonian matrix H and trial vectors ν,·. 
A "direct CI" procedure (27) is used to compute this matrix-vector product. It is driven 
by the four indices of the two-electron integrals. In order to compute the subspace 
representation of Η with respect to the trial vectors and the overlap matrix for the trial 
vectors scalar products v*wy. and v*v;. have to be calculated as well. 

As has been discussed in detail in (21) we decided for a coarse grain 
parallelization of Hv in which the outermost loops over segment pairs of the vectors ν 
and w were used for parallelization. This choice had several advantages: 

• it provided the most coarse-grain decomposition possible, 
• the complexity of the code below these loops did not affect the parallelization, 
• each process only needed to hold four vector segments, 
• the number of tasks is actually proportional to the square of the number of 

segments. Thus it is possible to generate a sufficiently large number of tasks to make 
load balancing effective. 

Dynamic load balancing was implemented via a shared counter. Each index in 
this counter corresponded to a task defined by the work to compute the contribution of 
one segment pair to the matrix-vector product w = Hv. Each process had a local copy 
of w on which the partial contributions to it were updated. Each process also had to 
read all integrals (and other quantities, like indexing arrays, which were not important 
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in terms of I/O). After completion of the loops over segment pairs the total vector w 
was obtained by a global sum operation from all partial contributions which had been 
accumulated by each process. In the original, sequential program there was also a 
formula tape which contained the coupling coefficients which determined the 
contribution of the one- and two-electron integrals to each matrix element of H. The 
formula tape entries were determined in terms of internal M O indices only. This 
formula tape was replaced by recalculating the required coupling coefficients on the fly. 
The actual updating scheme was carried out in terms of dense-matrix kernels (BLAS 
routines (28)) of the dimension of the M O basis. A l l files were located on magnetic disk 
and were accessed in the same way as in the sequential program. The subspace 
manipulations were not parallelized at all. 

Because of the top level coarse-grain parallelization only few and rather simple 
modifications had to be implemented into the original sequential code. In particular, the 
above-mentioned updating scheme in terms of dense-matrix kernels was completely 
unchanged. 

Outline of the New Features 

The main purpose of our first implementations was to investigate the overall efficiency 
of our segmentation scheme. From the analysis of the timings reported in (21) one can 
see that load balancing worked very well for the number of processors used and that 
substantial speedups could be achieved. However, it was also clear from the results 
obtained especially from the iPSC/860 that storing data on disk and having each 
processor access them directly from there created a severe bottleneck. In order to judge 
the amount of data transferred it is important to note that the 4-,3- and 1-external 
integrals were only read Ν« 8/2 times (Ν«.8 being the number of segments) and the 
remaining integrals (2- and O-external) N ^ N ^ - l ) ^ times in each iteration in the 
Davidson procedure. Thus, for the test cases and the number of segments (typically 
between 20 to 30) chosen in (21) the amount of data transfer was dominated by the 2-
external integrals even though they only constitute a small fraction of the 4- and 3-
external ones. Also, reading the trial vector segments and writing the resulting product 
vector segments for each segment pair created substantial I/O overhead. 

In order to overcome the just mentioned difficulties we proceeded in two steps. 
In the first step we tried to reduce the amount of data transfer to a rninimum while still 
using the conventional message-passing tools. In the second step we extended 
message-passing by the global-arrays tools in order to allow more flexibility in 
accessing data distributed over the memory of the individual processors. 

For the purpose of comparison with our previous timings we use the same C H 3 

test cases as before (21): C 2 v -pVDZ and C r p V T Z . The CI dimensions were 70 254 
and 2 528 400, respectively. 

Virtual Disk and Data Compression. First of all, we introduced the concept of a 
virtual disk residing in central memory. Files could be optionally written to this virtual 
disk instead of writing them to a magnetic disk. Thus, slow disk I/O was replaced by 
fast internally copying data in central memory. Since only space for four segments (and 
some other data buffers, etc.) have to be kept in core at the same time the requirements 
of our program concerning central memory are rather modest. Therefore, depending on 
the actual central memory available on a given computer, we can set aside an additional 
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amount of memory for the purpose of a virtual disk. Overflow of this storage area to 
disk is possible so that in cases of insiifficient central memory the calculation does not 
break down but continues with ordinary disk I/O. 

In order to make use of the virtual disk in an economic way a data compression 
scheme for the trial and the resulting product vectors was developed (29). Each of 
these vectors was truncated to a fixed number of decimal places which is chosen such 
that a given accuracy in the Davidson diagonalization scheme is obtained. A special 
floating point representation with a 7 bits exponent, one bit for the sign and with a 
variable length mantissa is used for that purpose. With an energy threshold of 10"6 

hartree an overall reduction of the two vector files by factors between 4 to 6 is 
achieved. Moreover, the subspace dimension in the Davidson procedure is set to four in 
order to reduce also in this way the amount of data to be stored. A new trial and 
resulting product vector is constructed from the individual subspace components each 
time the limit of the subspace expansion is reached. 

Test calculations were performed on an iPSC/860 with 16 M B available on 
each node. The C2V-pVDZ test case is small enough (integral files 1.2 M B total, 
compressed trial vectors and resulting product vectors 1 M B , compression factor 4.5) 
so that all files can be kept as separate copies on the local virtual disk of each 
processor. Since the integral files do not change during the iterations they are copied to 
the individual nodes at the beginning of the calculation. In each Davidson iteration, the 
trial vector is broadcast to all nodes and after completion of the hamiltonian matrix trial 
vector product the partial results are summed up via a global sum operation. The 
subspace manipulations were not parallelized at this stage of program development. 
Using the above-mentioned test example no disk I/O was performed at all during the 
entire calculation. This replicate data approach gave us well defined conditions in order 
to study the performance of the dynamic load balancing scheme in detail. Of course, it 
is not well suited to allow larger calculations because of its extensive memory 
requirements. 

In Table I timings for the iPSC/860 based on the just described program version 
are given. Compared to the previous results reported in Tab. 5 of Ref. 21 significant 
improvements in the speedups for the Hv step are observed. In particular, speedup 
factors of 6.8 for the 8 processor case and 11.9 for the 16 processor case are found. 
The difference between the observed and theoretical values are due to deficiencies in 
the load balancing scheme in that particular program version. In the timings for the 
global sum operation cpu times for data compression are included as well. As noted 
above, the subspace manipulations were not parallelized. 

Table I. Timings for the CH 3 C^-pVDZ test case determined on the iPSC/86Qa 

no.procs. 1 2 4 8 16 

1. broadcast 0.0 1.6 1.7 1.7 1.7 

2. Hv 303.6 159.0 83.5 44.5 25.5 

3. global sum 5.8 6.3 7.2 8.7 10.2 

4. subspace 4.7 4.7 4.7 4.7 4.7 

5. complete 
iteration 

314.2 173.0 97.1 60.0 42.4 

Timings are given in sees, wall clock time. 
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Global Arrays and Improved Dynamic Load Balancing. Despite of the advantages 
of the replicate data approach described above there are some major drawbacks to i t 
One has already been mentioned and comes from excessive memory requirements if 
one wants to keep local copies of the integral, ν and w files on each node. Another one 
arises because the entire trial vector has to be broadcast to all processors even though 
only a fraction of it will be used. Since we use dynamic load balancing, we do not have 
a deterministic sequence of tasks on each processor. Therefore, the whole vector has to 
be communicated at the beginning of each iteration. At the end of each iteration the 
partial updates to the resulting product vector w computed by each process have to be 
summed up resulting in a synchronization barrier. There is ample opportunity in the 
program to interleave asynchronous reading data from and writing data to individual 
nodes without interfering significantly with the operations taking place on other nodes. 
E.g., it is not necessary to read the entire trial vector ν at the beginning of the iteration. 
It would be sufficient to access just those segments at the time they are actually needed. 
Similar arguments apply to the updating procedure of the vector w. 

In order to achieve this increased flexibility we use the global-array toolkit 
developed by one of us (23). These tools support one-sided access to data structures 
(here limited to one- and two-dimensional arrays) in the spirit of shared memory. With 
some effort this can be done portably resulting in a much easier programming 
environment, speeding up code development and maintainability. Significant 
performance enhancements are observed by the aforementioned utilization of 
asynchrony of the execution of processes. 

Using the global arrays we are in the position to distribute all major files over 
the memory of the individual nodes. It is stressed, that in contrast to the previous 
program version now no multiple copies of files are required. However, we can still 
keep any files additionally, if we wish, as multiple copies as before in the 
aforementioned local virtual disks on each processor. This is especially advisable in 
cases, like the two-external integrals, where the file size is moderate but the file is read 
frequently. No access to disk files is made during the calculation. 

With the global arrays it is also straightforward to parallelize the subspace 
manipulations as well. Since the segment distribution over processors is the same for ν 
and w the computation of the scalar products can be arranged such that each processor 
only accesses local vector segments. Only these partial contributions for each segment 
have to be summed globally. The necessary communication between processors for that 
purpose is very small. Overall, the subspace step is very well parallelized and does not 
contribute significantly to the total timings. 

When going to larger numbers of processors the flexibility of our load balancing 
scheme had to be increased as well. Because of Amdahl's law (30) it is of utmost 
importance to avoid idle times of processors. Such a situation arises because some of 
the processors finish the Hv step earlier than others since no more work is available. In 
order to avoid this idling the granularity of the tasks towards the end of the 
computation of Hv has to be sufficiently small. In the original program each task 
consisted of the work for one pair of segments of v. First of all, it was straightforward 
to further subdivide this task with respect to the number of internal orbital indices of 
the two-electron integrals. A task list was generated and ordered according to 
decreasing timings (at the moment determined from the timings of the first iteration). 
The load balancing via the shared counter was now based on that ordered task list 
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which usually gave a nearly optimal load balance. In order to quantify the amount of 
idle times we define an efficiency of parallelization e for the Hv step as 

e=—hsa—β d ) 

ttotai is the total time needed by all processors to compute Hv, tmax is the longest time on 
one processor and nproc is the number of processors. 

Benchmark Calculations 

Benchmark calculations have been performed on the Intel Touchstone Delta at Caltech 
using the Q - p V T Z test case. In order to give an overview of the space requirements 
for the global arrays individual file sizes are given as follows: 

integrals 
4-external 38.0 M B , 3-external 16.3 M B , 2-external 1.4 M B , 1-external 0.13 
M B and 0-external 0.033 M B 

ν and w vectors (4 vectors each) 
162.0 M B ; diagonal elements of H- 20.3 M B plus several indexing arrays 3.3 
M B 

The 2-, 1- and 0-external integrals and an indexing vector referring to internal 
walks (0.9 MB) were stored as separate copies on each node on local virtual disks (2.5 
M B total). The remaining data (239.9 MB) were kept via global arrays as a single 
copy. Due to the very limited central memory available on each node of the Delta (12 
M B including operating system) only about 1.5 M B were available for global arrays on 
each node. Thus, we need at least the memory of about 160 processors to accomodate 
the space for the global arrays. The trial and update vectors were split into 115 
segments. 

In Fig.l the speedup curve for calculations up to 512 nodes is shown and 
compared to the ideal behavior. The observed speedup curve follows the theoretical 
one very closely to about 320 processors. Then the speedup starts to deteriorate. From 
448 to 512 processors even a decrease is to be observed. The reason for that behavior 

3.00 

192 256 320 384 448 512 

procs. 

Figure 1. Speedup curves obtained on the Intel Touchstone Delta for the CH3 Q -
pVTZ test case. 
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6. USCHKA ET AL. MuUireference Configuration Interaction Program 81 

comes from the fact that some of the 3- and 4-external integral cases start to dominate 
the calculation. As already mentioned above, some processors are still busy while 
others are already idling because of lack of work. This behavior is cleary demonstrated 
in Fig. 2 where the efficiency of parallelization as defined in equation 1 is shown in 
dependence of the number of processors. The efficiency of parallelization remains well 
above 90% up to 320 processors and then drops significantly for the just mentioned 
reasons. It would not be too difficult to split the 3- and 4-external cases further. 
However, since we plan to formulate these cases in a totally different way in the next 
future (see below) we renounced in spending some effort into this aspect of program 
optimization now. We also want to stress that even though we did not perform the Q -
pVTZ test case with less than 192 processors, from our experience with other test runs 
(on workstation clusters and on the IBM SP1) we are positive that the respective 
speedups would also follow closely the theoretical curve to lower processor numbers if 
only more central memory would be available on each node. 

Conclusions and Outlook 

Using the global-array toolkit a very satisfactory parallelization of the CI part of the 
COLUMBUS program system has been achieved. We are in the position to run that 
most complicated, and in many cases also by far dominating part very efficiently on 
more than 300 nodes on the Intel Touchstone Delta. Implementations on the IBM SP1 
and the KSR2 are planned for the next future. As the program is now, the computer 
time increases significandy with the number of segments (21) because some overhead is 
introduced in the formula generation for each segment pair. In order to reduce this 
overhead we have developed a scheme which uses specially adjusted Distinct Row 
Tables (for the definition of the DRT and further information on G U G A see (24,25)) in 

100.00 

70.00 A 1 1 1 1 1 
192 256 320 384 448 512 

procs. 

Figure 2. Efficiency of parallelization as defined by Eq. (1) obtained on the Intel 
Touchstone Delta for the C H 3 d - p V T Z test case. 
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order to construct just those coupling elements which are needed for that particular 
segment pair. First results are very encouraging. 

The major next change in the program will affect the treatment of the 3- and 4-
external integrals and is crucial for the design of the parallel structure of the whole 
program system. As it is now, the COLUMBUS program is structured in the 
conventional way, i.e. the two-electron integrals are calculated in the A O basis, 
transformed to the M O basis and then sorted into the different cases according to the 
number of external indices (0- to 4-external). These steps require a lot of complicated 
sorting and I/O steps with large amounts of data. This procedure is certainly not 
appropriate for parallelization. In case of a MRSDCI wave function A O driven 
formalisms for the 3- and 4-external integral cases have been developed (31,32). 
Therefore, a restricted integral transformation for the remaining 2-, 1- and 0-external 
integrals is required only. A first sequential code along these lines has been introduced 
into the COLUMBUS program as well (33). It will be the basis for a "double direct" 
MRSDCI program where all major I/O bottlenecks will be removed and which should 
be particularly well suited for parallelization. 
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Chapter 7 

Parallel Calculation of Electron-Transfer 
and Resonance Matrix Elements 

of Hartree—Fock and Generalized Valence 
Bond Wave Functions 

Erik P. Bierwagen, Terry R. Coley, and William A. Goddard, III 

Materials and Molecular Simulation Center, Beckman Institute, 
California Institute of Technology, 139-74, Pasadena, CA 91125 

We review the theory for the computation of the Hamiltonian matrix 
element between two distinct electronic wave functions ΨA and ΨB 

sharing the same nuclear configuration but differing electronic density 
distributions. For example, ΨΑ and ΨB might describe two end-
points in an electron transfer reaction or two configurations in a reso
nance description of a molecule. In such cases the calculation of the 
rate of electron transfer or resonance energy requires evaluation of 
ΨA|Ĥ|ΨB = ΨAB matrix elements. Because the orbitals of ΨΑ and 
ΨB have complicated (non-orthogonal) relationships, the calculation 

of HAB had been computationally intensive. In this paper we consider 
ΨΑ, ΨB having the form of closed or open-shell Hartree-Fock or 

Generalized Valence Bond wave functions and show the parallel 
structure of the theory. Using this parallel structure we present an ef
ficient computational implementation for shared memory multi
processors. 

The starting point of most ab initio quantum chemistry is an antisymmetrized product 
of molecular orbitals ΨΑ = |0A0$0C...|. To compute properties such as energy, 

EA = (ΨΑ \Ê\ ΨΑ), the molecular orbitals of ΨΑ are constructed to be mutually or
thogonal. However, many problems are conveniently described in terms of two dif
ferent ground state wave functions. For example to describe the charge transfer be
tween ΨΑ and Ψβ\ 

0097-6156/95/0592-0084$12.00/0 
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7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 85 

we need to compute cross-matrix elements, ( ¥ Ά | ^ | ^B) = ^ A B » where each mo
lecular orbital of ΨΑ overlaps some or all orbitals of ΨΒ. In this case the electron 
transfer rate is proportional to I ^ A ^ 2 > where: 

Τ - HAB ~ SABHAA 
1~SAB (1) 

SAB = ( *ΡΑ I Ψ8) i s t h e overlap matrix. 
Another example is the computation of chemical resonance energies. In this case 

ΨΑ and ΨB describe two different valence states (e.g., the two valence states of 
benzene). Representing the resonating wave function as Ψ = ΨΑ + ΨΒ, we can cal
culate its energy, 

EAm = 
_(ΨΑ + ΨΒ\Η\Ψ* + Ψ*)^ΗΑΑ + ΗΒΒ + 2ΗΑ 

^ ΨΑ + ΨΒ j ΨΑ + ΨΒ^ 2 + 2SA 
^AB 

> ^ > 3 a b ( 2 ) 

only if we have the means to calculate HAB and S ^ . Because of its intimate rela
tionship to resonance energies, we will refer to HAB as a resonance matrix element. 

The computation of resonance matrix elements can also be used to evaluate con
figuration interaction (CI) wave functions in cases where the configurations are non-
orthogonal. Such non-orthogonal CIs have been successfully carried out (7); how
ever, the computational complexity has limited the applications. If they can be made 
practical, non-orthogonal CI approaches have two distinct advantages over orthogo
nal CIs: 

1) the component states ΨΑ and ΨΒ can be chosen to be chemically 
meaningful descriptions of the system 

2) this "better" choice of basis states reduces the number of states needed 
to accurately describe the system 

Electronic reorganization problems such as electron transfer and interpretation of 
photoelectric spectra lead naturally to a few-state description in terms of non-or
thogonal basis states. 

A straightforward calculation of for non-orthogonal wave functions in
volves non-orthogonal matrix elements involving all orbitals of ΨΑ overlapping all 
orbitals of ΨΒ leading to an Ν ! dependency, where Ν is the number of occupied 
spatial orbitals in each wave function. This contrasts with the case of orthogonal 
spatial orbitals where there are only of order Ν 2 operations. To simplify this problem 
Voter and Goddard (2) showed that a pair of unitary transformations exists, which 
when applied to the molecular orbitals of ΨΑ and ΨΒ, respectively, a) leave the to
tal energy, E^, unchanged and b) reduce the computational effort to order Ν 2 by 
transforming ΨΑ and ΨΒ such that each orbital of ΨΑ overlaps exactly one orbital 
of ΨΒ. By reducing the computational effort this biorthogonalization, makes the 
resonance calculation tractable. 

Despite the computational savings obtained with clever transformations such as 
biorthogonalization, many systems of interest, especially in electron transfer studies, 
remain too large for practical HAB calculations with existing computer codes. Cur
rent programs, which have served well for smaller cases, do not exploit the underly-

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

9,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



86 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

ing parallelism in the theory and therefore cannot take advantage of multi-processor 
computers without significant restructuring (3). 

Goals Through the use of modern programming languages and software design we 
have produced a program for computing resonance matrix elements for systems of 
potentially unlimited size. The program meets the following design goals: 

• efficient performance on shared-memory multi-processors 
• user level control over the program's internal data structures and algorithms 

The Method section exposes the parallelism inherent in the theory of resonance ma
trix element calculations. The Algorithm section introduces algorithms for shared-
memory multi-processors and shows how the first goal was achieved. Program Ar
chitecture discusses our second goal in more general terms. Finally, in Results and 
Discussion we present timings and resonance energies for two systems of chemical 
interest. 

The computational theory of resonance matrix elements was developed by Voter and 
Goddard to examine the resonance energy between valence bond (and generalized 
valence bond (GVB)) (4-7) wave functions and is described elsewhere (2, 8). The 
following discussion highlights those parts of the theory that assist in understanding 
the parallel algorithm. 
Consider the resonance energy between two HF type wave functions as in equation 2 
where Ψχ = \φΪΦ*ΦΪ··\ is a normalized, antisymmetrized molecular wave function, 
and 0.*are the molecular orbitals (MO's). This problem is simplified by transform
ing the orbitals of *FA and ΨΒ such that: 

This biorthogonalization reduces the problem to the more standard-looking evalua
tion: 

where the overlap has been replaced by a product of the individual orbital overlaps. 
Expanding the above expression over molecular orbitals leads to: 

Method 

(3) 

ΗΑΒ=(ψΑ\Η\ψΒ)3ηάΞΑΒ^Υ[λ{ 

(4) 

(5) 

(6) 

(7) 

^ Γ = ( ^ ( 1 ) ^ ( 2 ) | - | ^ ( 1 ) ^ ( 2 ) ) 
r λ Ί > the exchange term (8) 
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7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 87 

Generalizing this result to the open-shell case requires treating the alpha and beta 
spin systems separately when performing the biorthogonalization. This treatment is 
necessary in order to produce transformations which leave the energy unchanged: 

HAB ~ Σ Άΐα^ία,ία + Σ Ήΐβ^ί^ΐβ + Σ Viaja[jîa,ja " Kia,ja ) + 
ia ίβ iaja 

Σ νίβ^φΒ;β-Κφ*β)+ Σ ViaJfi{j?aBjv) 
Φ>]β iajfi (9) 

where the a and β indices indicate spin, and the r/'s are as defined in equation 5. 
Further generalizing this result for multi-determinantal wave functions: 

φ A _ ^ çAa ψΑα φΒ = ^ ç<Ba ψΒα 

a and « (10) 

the matrix element can be rewritten, giving a sum of single-determinant pair energy 
calculations: 

HAB = Σ Σ cAacBb ( ΨΑα \h\ ΨΒΙ} \ 
a b (11) 

Using a basis set expansion: 

" (12) 

and rewriting HM in terms of density matrices, we have the following expression: 

^CAaCBt(WA'\H\WBb} = 

ab μνλσ ν y ' v ν ' / ι / > \ 
one electron contribution two electron contribution ( 1J J 

where D^v = Σ€μ?€ν? i s a V^h pseudo-density matrix element for the abth determi-
i 

nant pair; (χμχν\χλχσ) is the two electron integral over basis functions; Τμν is the 
kinetic energy over basis functions; νμν is the potential energy over basis functions; 
and we have incorporated the rç's into the density matrices. The most time consum
ing part of the above calculation is the two-electron contribution, and our algorithm is 
dedicated to calculating this contribution efficiently. 

Algorithm 

Generally, the two electron integrals are stored as a set of all λσ indices for a specific 
μ ν index. In the following discussion μν and ab are "pair indices": they span all 
pairs of μ, ν (basis functions) and a,b (density matrices) indices, respectively. The 
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88 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

notation μ ν + i indicates that the next pair index (the usual sequence is 1,1; 2,1; 2,2; 
3,1;...etc.), and in a similar manner ab+1 denotes the next density matrix pair index. 
In order to calculate the contribution for this particular set of integrals (pair index μν) 
and a particular density matrix (pair index ab), the following operations are neces
sary: 

1) Read in or compute the integrals (all λσίοτ a particular μ ν index) 
2) Read in or compute the pseudo-density matrices (index ab) 
3) Calculate the energy contribution for the abμv indices ( E^) 

Pipeline Algorithm The above operations are not independent: the two-electron en
ergy calculation requires prior setup of the integral and, density matrix information. 
Despite these interdependencies, the separation of the computation into the above op
erations represents the first opportunity for parallel computation. Each operation will 
have its own processor pool; in order to keep each pool simultaneously active, we use 
a pipeline to control the data flow: while a two-electron energy component, ΕΛμν, is 

being calculated by one of the processor pools, the integral set μ ν + i and density ma
trix ab+1 are being simultaneously read/calculated by processor pools two and three. 
In Figure 1, each labeled operation occurs simultaneously on different processor 
pools. When all three tasks are finished for the specified pair indices, the results flow 
as indicated and processing starts on the next set of pair indices. 

Read in integrals μν+l Calculate density matrix ab+1 

t 

C o m p u t e ^ μ ν 

Figure 1: Pipeline for Computation of ΕΛμν 

The next obvious opportunity for parallelism would be to create multiple pipe
lines feeding into different portions of the energy calculation (Figure 2): 

Figure 2: Parallel Pipelines for Computation of ΕΛμν 

However, this simple replication of the pipeline leads to inefficiencies: different 
pipelines recalculate identical setup information (integrals, density matrices) needed 
by other pipelines: in the above example the integral set μ ν + i and density matrix 
ab+1 are each being setup twice. In order to avoid redundant computations, we reor
ganize the algorithm in terms of a grid of energy computations. Each block on the 
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7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 89 

grid represents a single two-electron computation, ΕΛμν, and a block's horizontal and 
vertical locations identify the prerequisite integrals and density matrices. A complete 
HAB calculation requires traversal of the entire grid. The key to efficiently using 
integral and density matrix information lies in determining how to traverse the com
putational grid map, and how many grid locations to compute in parallel. 

Truncated Wavefront The solution we have chosen sweeps a "wavefront" of two-
electron energy computations across the grid (Figure 3). At a particular step, the en
ergy calculations performed are (ab, μν-5) , (ab~l, μν-4) , (ab-2, μν -3 ) , —> (ab-5, 
μν), where the pair indices correspond to the prerequisite density matrices and inte
grals, respectively. Concurrently, the ab+1 and μ ν + i setup operations are per
formed. The energy calculations are represented graphically by a diagonal wave-
front running from (ab, μν-5) to (ab-5, μν). 

Density Matrices 
ab-5 ab-4 ab-3 ab-2 ab-1 ab ab+1 

Integrals 

Figure 3: Wavefront Propagation 

In the single pipeline (Figure 1) concurrent storage was required for only two 
sets of integrals (μν and μ ν + 7 ) ^ two sets of density matrices (ab and ab+1). Un
fortunately, this is not the case for the wavefront scheme. As the wave progresses, all 
previous information (indices 0 to ab+1 or μν+7) is required; only when an axis has 
been completely swept is the setup information no longer necessary. This memory 
requirement is a serious problem since large systems may require more memory than 
is available. Truncating the wavefront is a simple solution. However, what is the 
most efficient way to propagate the truncated wave while still visiting every location 
in the calculation grid? One choice is propagating the wavefront along either of the 
two axes. For example (see Figure 4), if we restrict the range of integral indices to 
sets of three, we can propagate a wave of constant length three along the density 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

9,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

00
7

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



90 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

matrix axis. Completing the first sweep across the density matrices results in the 
following contribution to : 

3 

μν=1<ώ (13) 

Truncating the calculation^ wavefront has many benefits. In our example the 
same integrals are used for the entire sweep along the density axis resulting in sig
nificant reuse of memory. Additionally, in a one-to-one mapping of the two-electron 
calculations to processors, the propagation described requires no movement of the 
integral buffers from processor to processor. As shown in Figure 4, processor one 
has integral set one stored in its local cache for the entire propagation of the wave 
along the density matrix axis. The same is true with processors and integral sets two 
and three. Wavefront truncation also allows a degree of freedom for optimizing the 
calculation: we can isolate the slowest setup step (reading the integrals in our exam
ple) and then perform this step least often by propagating along the other axis (the 
density matrices). 

Figure 4: Truncated Wavefront Propagation 

The wave formalism allows a smooth transition as one sweep ends and another 
begins. As shown in Figure 2, the seventh step, which would extend beyond the den
sity matrix indices, "wraps around", restarting at density matrix 1. The obvious al
ternative to the wave formalism, a "vertical scan", does not allow for this smooth 
transition. The vertical scan would calculate Εαμν for μ ν = 1 to 3, ab = 1 while set

ting up ab = 2, and so on. When calculating ΕΛμν for μν = 1 to 3, ab = 7 (the final 
calculation of the row), the next setup required would be μν = 4 to 6 and ab = 1, 
which would result in a less efficient use of memory (storage for six integral buffers 
required rather than four) and more setup operations to perform, possibly reducing 
the number of processors in the calculation pool. 
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7. BIERWAGEN ET A L Hartree-Fock and GVB Wave Functions 91 

Load Balancing For the algorithm to run efficiently, we would like to minimize in
ter-processor communication and make continuous, non-redundant use of all avail
able processors (load balancing). Even though inter-processor communication is im
plicit (i.e., data moves upon memory access) on a shared memory multi-processor, it 
is still costly. We have already mentioned how either integrals or density matrices 
can be reused by choosing the wavefront direction. Additionally, the choice of wave-
front direction also assists in load balancing. 

However, more flexibility for balancing between the three processor pools is 
gained by performing a composite of energy component calculations at each grid lo
cation, rather than a single energy calculation. Specifically, we group the single en
ergy calculations into larger, square blocks, with a length of B, to be determined later; 
these blocks are then used as the basic unit for the truncated wavefront (Figure 5). 
Although there will not necessarily be a one-to-one mapping of blocks to processors 
in most calculations, the arguments presented in favor of this organization still hold 
(minimal inter-processor communication and load-balancing). 

Figure 5: Truncated Wavefront Propagation, Using Blocking 

The block length, B, is another degree of freedom which allows load balancing 
between the processor pools. The number of energy calculations per time step varies 
quadratically with B, since each block represents B 2 calculations. In contrast the 
number of setup operations varies linearly, since there are only Β per block. Thus, by 
varying the blocklength, the algorithm can regulate the ratio of energy calculations to 
setup operations performed for each timestep. This regulation will ultimately be 
based on live timings of each sub-task. 

The desire for no idle processor pools requires that the setup time per time-step 
is equal to the calculation time per processor per time-step; thus, each processor will 
complete its task at the same time as all others. One (or sometimes two) processors 
are dedicated to the setup group. To determine the two-electron calculation time per 
processor an expression for the total two-electron calculation time is required. The 
total number of integrals and density matrices stored, M, (assumed to be the same) is 
determined by the size of the available internal memory. M/B integrals and M/B 
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92 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

density matrices can thus be stored (where Β is the blocklength). Recalling that one 
group in memory is dedicated to the setup, we find (M/B) -1 active blocks, giving: 

two-electron calculations per timestep. If the number of processors on the machine is 
nproc, the following is true: 

as one processor is devoted to the setup. Equation (15) is then solved for B. Ulti
mately, the algorithm will use live timing data for dynamic load-balancing; currently 
the timings are approximated based on machine specifications. 

It is also important to know how the complete calculation will scale as we vary 
the number of processors. To do this, it is necessary to find an expression for the to
tal calculation time. We know the ideal time for each step, the expression given 
above, and need only to determine the total number of steps a complete calculation 
requires. If there are Τ calculations to perform for a complete calculation, and B(M-
B) calculations per step, there are Τ / (B(M-B) ) steps for a complete calculation. 
Thus, the total calculation time is 

and we find that the total calculation time should scale inversely with the number of 
processors. This expression is somewhat unusual since there is no explicit depen
dency on the setup operations; there is only an implicit dependency in the decrease of 
the number of processors available for the calculation. As the number of processors 
increases, this factor should be negligible, allowing optimal parallelization. 

Program Architecture 

The following describes the important internal characteristics of our program. We 
introduce here some of the software techniques that have proven useful. 

C++ Programming Language Although far from being a standard in computational 
quantum chemistry, C++ allows easy organization of the program due to a natural 
mapping between standard chemistry concepts and computer code. The major data 
structures in our program are implemented as C++ classes or "objects". Objects are 
an encapsulation of data with associated algorithms or methods for manipulating that 
data. Many chemical concepts can be described naturally as objects and hierarchies 
of objects. For example, molecules can be thought of as data (atoms, basis sets, 
atomic coordinates), plus algorithms (basis set manipulations, coordinate transforma
tions); in a likewise manner the component atoms in the molecule can also be de
scribed as objects. A high-level object in our program is the ResCalc object, which is 
used to organize the data (molecules, wave functions) and implement the dgorithms 
(biorthogonalization, two electron energy contribution) needed for the resonance cal
culation. The natural mapping between chemical and program objects clarifies logic 
of the program and the structure of the data. 

(14) 

Setup time = 
B(M - B) * Two - electron c alculation time 

nproc -1 (15) 

T* Two - electron c alculation time 
nproc -1 (16) 
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The Tel Interpreter When designing the user-interface, it is desirable to maximize 
the amount of information a user can extract from the program. Additionally, the 
user should have a significant level of control over each important algorithm within 
the program. To accomplish this flexibility each major C++ object was provided 
with an interface to the command language that drives the program, the Tool Com
mand Language (Tel) (9). 

Tel is an embeddable and extensible command interpreter; it is embeddable be
cause the interpreter is linked into our program and extensible because the native 
command set of the interpreter can be augmented by C/C++ code. Tel provides a 
mechanism by which a text stream is interpreted while our code provides the imple
mentation necessary for the commands. The Tel language is simple, yet powerful 
enough to surpass the capabilities of most specialized "macro" languages used in 
computational chemistry codes. Tel includes loops, conditional expressions, and 
variables. The main loop of our program consists of collecting input characters 
(either from a script file, a TCP/IP socket connection, or an interactive command 
line) and passing them into the Tel interpreter. 

Tel Enabled Objects One of the most important Tel commands that we have im
plemented is "new"; this command allows users to instantiate one of the chemical 
C++ objects. For example, to load a molecule, the user enters the command new 
Molecule <molecule name>. Once instantiated, a new chemical object provides ad
ditional Tel commands having a nearly one-to-one correspondence with the methods 
provided by the underlying object. In the molecule example, there are commands for 
loading the molecular structure, loading wave function coefficients, extracting basis 
set overlap matrices, etc. We refer to these objects as Tcl-enabled objects, as they are 
C++ objects available at the user-level. 

As a result of Tcl-enabling all important C++ objects, the user can instantiate, 
access, and control all of the major data structures and algorithms in the program. 
This enabling allows an unprecedented flexibility in constructing a calculation and 
inspecting its results. A few examples illustrate this point. Suppose the user wishes 
to construct an electronic state from a superposition of two wave functions, whose 
coefficients are stored on disk, and use the resulting wave function in a resonance 
calculation. Using the commands available to the Tcl-enabled Molecule object, the 
two wave functions can be loaded; their coefficients extracted to Tcl-enabled Matrix 
objects; these Matrices manipulated using standard linear algebra techniques; and the 
resulting Matrix returned back to a Molecule object. The modified Molecule object 
is then used in the resonance calculation. This is accomplished by the user without 
modifications or additions to the program. 

As another example, consider the task of reading a wave function from a source 
not currently supported by the resonance program. For most programs this would 
require additional code to be linked into the program to support the new file format. 
However, using Tcl-enabled objects and text processing capabilities built into stan
dard Tel, the user can write a script to import foreign file formats directly into the 
Tcl-enabled Molecule object without needing to recompile and relink the program. 

The use of Tel and Tcl-enabled C++ objects has proven extremely useful during 
normal use and debugging as well. Because of the high degree of access to internal 
data structures and algorithms, many tests could be performed at the script level dur
ing debugging. For example, at a point where wave functions should be biortho-
gonalized, a debugging script can easily extract the wave function coefficients to Tcl-
enabled Matrix objects, compute the overlap matrix, and check for a diagonal matrix. 
We found debugging time to be greatly decreased by reducing the need to install di
agnostic print statements and reducing the need for recompiling and relinking. 
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Results and Discussion 

A l l timing results reported come from calculations performed on a Silicon Graphics 
4D/480, with eight 40 MHz R3000 processors. The system contains 256 Mb of 
shared internal memory. We chose two large problems of chemical interest to use for 
timing tests. The first, calculating the resonance energy of the cyclopentadienyl an
ion (C5H5", Cp), involves a five valence-state calculation where each state has three 
GVB-correlated pairs (perfect-pairing model) and each state localizes the negative 
charge on a different carbon atom. The second problem is the calculation of the 
resonance energy for the molecule l,6-didehydro[10]annulene (C 1 0 H 6 ) , a ten mem-
bered ring that formally meets the Huckel criteria of (4n+2) π-electrons for aro-
maticity. The π-valence structure can be written as a resonance between two sets of 
five π-bonds: 

This system is of interest for understanding the activity of enediyne antitumor antibi
otics (10). Both calculations were beyond the limits of older programs and thus pre
sented fresh opportunities for our program. 

The timing data presented represent the elapsed time to completion for each run. 
Ideally, this time should be related to the number of processors by the following rela
tionship: 

j . . X T time on a single processor 
total execution time on Ν processors = 2 — 

Ν (processors) çyj^ 

Figure 6 presents the timing results. As one of the processors is always devoted 
to a setup operation, the effective number of processors devoted to the parallel two 
electron energy calculation is nproc - 1 (equation 16). The x-axis represents the 
number of processors devoted to this parallel two-electron energy calculation, and the 
y-axis represents the speedup in total elapsed time. The scatter in the data is a result 
of running the program on an otherwise heavily loaded system. We were able to 
assure our program ran at a high priority by using Nanny (11); nevertheless, these 
background jobs still had a slight effect on our run times, probably due to I/O 
contention and extra context switching. Because of the other jobs on the system, and 
the fact that our runs could not have perfect utilization of the desired processors, we 
present in Figure 6 execution time speedups scaled to 100% utilization of the desired 
processors, to maintain constancy amongst the data. 

Note that the Cp case begins to exhibit leveling off as the number of processors 
is increased, while the C 1 0 H 6 case still exhibits linear speedups. The Cp case is much 
smaller than the C 1 0 H 6 case, and we believe that its smaller size causes it to begin dis
playing non-linear speedups more rapidly than the larger C^Hg case. While this phe
nomenon is not desired, it is acceptable, as the larger cases are the ones for which 
greater speedups are needed. 

Based on these results, we expect the speedups will scale well to larger numbers 
of processors. Recent results on distributed clusters of workstations support this 
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7. BIERWAGEN ET AL. Hartree-Fock and GVB Wave Functions 95 

projection(i2). We are in the process of porting the program to a 64 processor KSR 
computer where additional tests can be made. 

6 

5 

§" 4 

2 

1 
1 2 3 4 5 6 

SGI R3000 40 MHz CPUs 

Figure 6: Effective Numbers of Processors vs. 
Elapsed Time Speedups Scaled to 100% utilization 

The values of HAB, H^ , and SAB for Cp and C 1 0 H 6 are shown in Table I (note that 
HAB, HAA are purely electronic energies; the nuclear repulsion energies are not 
included). For Cp the values are for the matrix elements between the specified 
charge localizations, either the 1-2 interactions (ortho) or the 1-3 interactions (meta). 
Solution of the secular equation for Cp leads to an EAB of -192.185956986 hartree for 
the total wave function, compared to the single state energy of -192.17354519 hartree 
(both energies include nuclear repulsion terms). 

Table I: Resonance Matrix Elements and Overlaps for C 1 0 H 6 and Cp. 

Resonance Interaction H^ (hartrees) H^ (hartrees) 

C 1 0 H 6 -510.092102693 -796.224965290 0.640594 
Cp-ortho charges -330.798477408 -342.951275455 0.965792 
Cp-meta charges -336.133480369 -342.951275455 0.981394 

Advances in ab initio techniques and computers have led to the efficient 
calculation of larger and larger HF and GVB descriptions of molecules. The ability to 
rapidly calculate resonance matrix elements for these large systems provides a way to 
study resonance and electron transfer problems with more rigor than previously 
feasible. The ability to use chemically intuitive basis states may help lead to a better 
understanding of the important energetics in electron transfer and other resonance-
related problems. 
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Chapter 8 

Promises and Perils of Parallel Semiempirical 
Quantum Methods 

Kim Κ. Baldridge 

San Diego Supercomputer Center, P.O. Box 85608, 
San Diego, CA 92186-9784 

The application of semiempirical quantum mechanical procedures on 
Multiple-Instruction-Multiple-Data (MIMD) parallel computers is found 
to be a challenge. Key computations in these large scale quantum 
chemistry packages is the determination of eigenvalues and eigenvectors 
of real symmetric matrices. These computations arise in both geometry 
optimization as well as vibrational analyses, and, typically consume at 
least half (most, in the latter case) of the total computation time. This 
work illustrates the parallelization of both tasks within MOPAC. The 
application of the parallel code is demonstrated on several key molecular 
systems. 

Utilization of computationally derived chemical and physical properties has vastly 
enhanced the success of experimental ventures into the creation of designer molecules 
of technological and medicinal importance. Rational drug design and novel 
nanomolecular materials would be complete fantasies if not for the atomic scale insight 
provided by computational chemistry. Because of the high demand for pharmaceuticals 
and composite materials to display a special uniqueness of action or efficiency in 
response, the tightness on specific structural tolerances and hence the degree of 
complexity in these molecular blueprints are increasing at a rate only manageable by 
advanced computing methods (e.g. massive parallelization, or ultrafast vectorization). 
Despite the extraordinary abilities of modern hardware technology and coding methods 
to manipulate the raw data, the rate limiting step in harmonizing the intricacy and 
precision required to push forward these chemical frontiers ultimately comes down to 
the optimization of the complex computational methodologies on state-of-the-art 
hardware platforms. 

There are currently three commonly employed theoretical methods for the study 
of the properties of molecules: Molecular Mechanics; Ab Initio; Semiempirical. (Figure 
1). 

0097-6156/95/0592-0097$12.00/0 
© 1995 American Chemical Society 
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98 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 1. 

Computational Chemistry 
Methodologies 

Schematic showing the relationship between theoretical method 
and size of molecular system. 

It has been well-established that quantum mechanical methods based on Hartree Fock 
(HF) theory provide a successful and thoroughly tested framework for molecular 
calculations (7-2). There are, however, major limitations in the size of molecular 
systems that can be reasonably calculated on the available hardware. Computational 
costs and complexity of solving the large iterative eigenvalue/eigenvector systems 
associated with the theoretical methods become quite demanding (3). Even the fastest 
computers have limitations on the size of molecular systems that can be solved due to 
CPU time, memory, and disk space requirements. At present, the upper limit is about 
1000 basis functions (Basis functions are mathematical functions which represent 
atomic orbitals, as in descriptive organic chemistry. The number of basis functions 
used in a calculation of a particular molecule determines the level of accuracy of that 
calculation, and forms what is called a basis set), which corresponds to less than 40 
first row atoms at a modest level basis set, i.e, about a tetrapeptide. On the other hand, 
molecular mechanics and molecular dynamics techniques are extremely fast empirical 
methodologies which are able to handle very large molecular systems, such as entire 
enzymes with over 100 peptide residues. These methods sacrifice in generality and 
accuracy. In addition, they are not parameterized for other than ground state systems, 
and are unable to adequately represent geometries involved in bond-making/bond-
breaking processes. 

Between Hartree Fock methods and empirical-based methods are semiempirical 
methods. Like ab initio methods, they are basically quantum mechanical in nature, the 
main difference being that the semiempirical methods involve additional approximations 
based on experimental data, thus simplifying the calculations considerably. 
Semiempirical methods are right on the verge of becoming of routine use in polymer 
and biochemical applications. The major constraint, despite the numerous 
methodological advances in past years (4-8) is that the size of chemical systems that can 
be analyzed, is largely a fonction of available single-processor computer power. 
Although this power continues to increase in magnitude, it cannot continue to improve 
at a rate that keeps pace with the desires and expectations of the scientific community. 
Parallel architectures promise to make calculations of this size more of a reality. 
However, only recently has it been realistic to turn towards the parallel computing 
environment for any of these types of calculations (9-72) primarily due to the fact that 
new distributed-memory algorithms that utilize the architectures of the parallel platforms 
must be developed. 

This chapter focuses on the promises and concerns of applying parallel methods 
to semiempirical calculations for the solution of problems that are currently not possible 
with either ab initio or parallel ab initio methods (13-18) and with an accuracy greater 
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8. BALDRIDGE Parallel Semiempirical Quantum Methods 99 

than that achievable with the molecular mechanics and dynamics type procedures. The 
conversion and performance evaluation of the semiempirical quantum chemistry code, 
MOPAC (19-21) on the Intel iPSC/860 and Paragon platforms will be demonstrated. 

Semiempirical Quantum Methods 

The primary goal of quantum chemical codes is to solve the molecular Schrodinger 
equation (22-25). This involves the solution of the generalized eigensystem 

A xi = λΐ xi 

where A is a given η χ η real symmetric matrix, and (λ[, x[) is one of η 
eigenvalue/eigenvector pairs to be determined. The solution of this eigensystem 
provides the molecular wave function, from which a total description of the molecule, 
including all molecular properties such as equilibrium geometry, dipole moments, 
energetics, kinetics, and dynamics is obtained. The applications programs (26-28) for 
these theories are typically large and complex, and large real symmetric eigenproblems 
(29-35) arise in various options, notably self-consistent field (SCF) (36) computations 
and molecular vibration analysis. 

In SCF computations, A is typically the matrix representation of the Fock 
operator with respect to a given set of basis functions (atomic orbitals). The eigenvalue 
λί is an energy level corresponding to a molecular orbital represented as a linear 
combination of basis functions (atomic orbitals), with the components of the 
eigenvector xi as the basis function coefficients. The matrix dimension η is the number 
of basis functions used in the computation, which varies roughly with the number of 
electrons in the molecule and the desired accuracy of the molecular orbital function 
representation. Values of η on the order of a few hundred are easily reached in even 
moderate-sized systems with several heavy atoms. 

The SCF computation is iterative in nature, as the Fock operator depends on its 
own eigenfunctions, and the Fock matrix is usually constructed from the orbitals 
computed on the previous iteration. Thus, a sequence of eigensystems must be solved 
until convergence is attained. Moreover, the SCF iteration often is the inner iteration in 
a geometry optimization in which the nuclear coordinates are optimized with respect to 
energy. Thus, a single geometry optimization for a molecule with even a few heavy 
atoms (light atom refers to hydrogen; heavy atom refers to all other types) may require 
the solution of hundreds of large real symmetric eigensystems. 

In vibrational analyses, the matrix A is the Hessian of the energy with respect to 
the 3*N - 6 (N = number of atoms in the molecule) degrees of vibrational freedom in 
the nuclear coordinates. The eigenpairs (λί, xi) determine vibrational frequencies and 
corresponding normal modes. The vibrational eigensystems are usually dimensionally 
somewhat smaller than in the SCF case, but again they may need to be solved 
repeatedly, for example, as part of a reaction path following computation. 

In ab initio SCF computations, the matrix element computations involve the 
evaluation of up to 0(n 4) floating point operations for the evaluation of Coulomb and 
Exchange (interaction) integrals, whereas the solution of a single eigensystem is 0(n$) 
(i.e. evaluation of the integrals dominate the computational effort). In semiempirical 
techniques, an approximate Hamiltonian is used so that the number of calculated Fock 
matrix elements is greatly reduced. These methods are based on the assumption that 
only electrons on the same atoms have significant interaction energies; all others are 
represented via experimental parameters. This reduces the calculation of integrals to 
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100 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

0(rfi) and thus, solution of the eigensystem becomes the primary computational effort. 
MOPAC supports four semiempirical Hamiltonians: MNDO (37), MNDO/3 (38), A M I 
(14), and PM3 (39). These are used in the electronic part of the calculation to obtain 
molecular structures, molecular orbitals, heats of formation, and vibrational modes. 
The advantages of semiempirical over ab initio methods are that semiempirical methods 
are several orders of magnitude faster, and thus calculations for larger molecular 
systems are possible by using one of these semiempirical Hamiltonians. The reliability 
of these methods in predicting accurate geometries and heats of formation has been 
demonstrated in many applications (40-42) 

Parallel MOPAC: Structure and Task Distribution 

M O P A C is public-domain software available through QCPE (43). Version 6.0 of 
M O P A C runs on V A X , C R A Y and workstation platforms, and consists of 
approximately 50,000 lines of FORTRAN code, in 190 subroutines. Resident memory 
usage in M O P A C is governed entirely by parameter settings chosen at compile time. 
The amount of storage required by MOPAC depends on the number of heavy (non-
hydrogen) and light (hydrogen) atoms that the code has been parameterized to handle at 
compile time, and whether configuration interaction capabilities are incorporated. 

Hardware performance monitoring (44) (HPM) indicates that the majority of the 
computational time required to run MOPAC is divided among evaluating the electronic 
interaction integrals (Hartree Fock matrix preparation), calculating first derivatives 
(geometry optimization procedure), calculating second derivatives (vibrational analysis) 
and solving the resulting eigensystem (diagonalization). (Figure 2). 

Figure 2. Pie charts illustrating the distribution of tasks for a representative 
geomery optimization and vibrational analysis calculation. 

The precise division of CPU time among the tasks for a geometry optimization 
procedure may vary with molecular composition (Timings indicate that diagonalization 
can represent from 40-80% of the total computational load, depending on molecular 
construction); however, the general procedures which dominate the work load for the 
total calculation will remain the same. In general, semiempirical methods process N ^ 
integrals instead of N ^ as with conventional HF methods, therefore, the computational 
bottleneck lies at the diagonalization routine, giving an overall N ^ time dependence. 
The SCF calculation, geometry optimization, and second derivative evaluation 
(vibrational analysis) for the available Hamiltonians were parallelized in this work. 
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8. BALDRIDGE Parallel Semiempirical Quantum Methods 101 

The parallelized algorithms were implemented on a 64-processor Intel iPSC/860 
hypercube, and subsequently on an Intel Paragon; both distributed-memory, message-
passing parallel computers. In the Intel hypercube, each processing node contains an 
Intel i860 CPU and 8 Mbytes of R A M (16 and 32 Mbytes/node on the Paragon). The 
communication links are through Intel's Direct-Connect Communications (DCM) 
hardware with a 2.8 Mbyte/sec maximum bandwidth for the iPSC/860 and 10-12 
Mbytes/sec on the Paragon. (The band width on the Intel Paragon is widely variant 
depending on the system configuration; potentially, one could see a value as high as 4-5 
times this.) 

Geometry Optimization Component 

As prompted by profiling techniques, detailed inspection of the algorithmic format of 
M O P A C shows that most of the computational work in the semiempirical geometry 
optimization procedure is distributed over the following three tasks: 

1) Evaluation of one- and two-electron matrix elements. 
2) Formation of the Fock matrix and diagonalization. 
3) Evaluation of derivatives. 

Sequential bottlenecks are the limiting case of poor load balancing. Of primary 
concern in choosing a parallel scheme is to ensure that some processors are not sitting 
idle awaiting results of others. Three basic techniques were considered in the 
parallelization of MOPAC (Table I): domain decomposition, control decomposition 
and statistical decomposition. In domain decomposition, the domain, or data, to be 
dealt with is a set of rectangles, η in number. Since every rectangle is the same amount 
of work, we send n/p rectangles to each of ρ processors. Theoretically, nearly perfect 
load balancing can be obtained using this method. 

More often, the data can not be easily split into neat even packets of work. In 
cases like these, one can employ control decomposition in which case a formula is 
devised which approximately balances the work load across processors, based on the 
type of computation that is being performed. Finally, statistical decomposition is a 
parallel strategy for programs where the work load is dependent on the complexity of 
the problem the user has specified at run time. In the specific case of quantum codes, 
the work load involved in the calculation of the various types of integrals would, in 
many cases, benefit from a statistical parallel decomposition. The following section 
elaborates on the application of these decomposition schemes to MOPAC. 

Table I. Parallel Decompositions 

Decomposition Scheme Characteristic 

Domain Domain (data) is a set of η rectangles, distributed over 
ρ processors. 

Control Domain is distributed in uneven packets to ρ processors. 

Statistical Domain is distributed according to complexity of run
time problem. 
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1) Evaluation of one- and two-electron elements. Geometry optimization 
begins with a call to a controller for the specific optimization method. This routine 
makes several calls to subprograms to carry out the various aspects of full optirnization. 
Much of the calculation occurs in setting up the Hamiltonian matrix (Scheme I: Task 1, 
Loop over ATOMS). The resulting matrix elements are used to calculate the SCF heats 
of formation, the nuclear energy, and the one- and two-electron interaction integrals. 
MOP A C is based on a semiempirical approach, therefore, many of the integrals are 
ignored, others are calculated using experimental parameters stored in common blocks, 
and a few are calculated fully. 

The computation of the one-electron and two-electron integrals has been 
distributed over nodes by partitioning the number of atoms over nodes and giving each 
node an independent number of integrals to calculate. In general, 100 integrals are 
calculated for each heavy atom - heavy atom interaction, 10 integrals for each heavy 
atom - light atom interaction, and 1 integral for each light atom - light atom interaction. 
Ideal load balancing can be achieved by splitting up the integrals in accord with the type 
of interaction so that each node receives approximately equal work to do, i.e. statistical 
decomposition. 

Because each two-electron integral contributes to several Fock matrix elements, 
it is necessary to have the independent node results collected before the Fock matrix is 
created. A way around this is to have each processor work on its own partial Fock 
matrix, which is gathered once at the very end. The construction of MOP A C makes 
this more difficult, but is currently being investigated. 

2) Formation of Fock matrix and Diagonalization. The formation of the Fock 
matrix involves computation of the remaining contributions to the one-center integrals, 
and the two-electron two-center repulsion terms. Each of these subtasks is split over 
nodes in accord with the number of atoms (Scheme I: Task 2a, Loop over ATOMS). 
Once this is done, the density matrix can be computed along with information about 
orbital occupancy. This task is distributed over nodes in accord with the number of 
orbitals (Scheme I: Task 2b, Loop over ORBITALS). 

MOP A C employs a combination of techniques for complete diagonalization. A 
"fast" or pseudo-Jacobi diagonalization procedure is invoked in initial SCF iterations. 
The diagonalizations during the final SCF iterations are then taken over by a more 
rigorous QL algorithm (45-49). 

Typically, a diagonalization method consists of a sequence of orthogonal 
similarity transformations. Each transformation is designed to annihilate one or more 
of the off-diagonal matrix elements. In the case of the Jacobi method, successive 
transformations then undo previously set zeros, but the off-diagonal elements continue 
to decrease until the matrix is diagonal to the precision of the machine. Accumulating 
the product of eigenvector transformations gives the matrix of eigenvectors, and the 
elements of the final diagonal matrix are the eigenvalues. In general, the QL (QR if the 
matrix is reversed graded) algorithms are much faster than the Jacobi methods, 
however, the Jacobi methods can be computationally time-favorable relative to QL if a 
good initial approximation is available, and only a single Jacobi-sweep is done. 

MOP A C replaces the full QL eigensolution by a single Jacobi-like sweep of just 
the occupied-virtual block for intermediate SCF iterations often with considerable speed 
enhancements (50). The algorithm is considered a pstudo-diagonalization technique 
because the vectors generated by it are more nearly able to block-diagonalize the Fock 
matrix over molecular orbitals than the starting vectors. It is considered pseudo for 
several reasons (3), the most important of which is that the procedure does not generate 
eigenvectors. In the chemical sense, the full orbital matrix representation is not 
diagonalized, only the occupied-virtual intersection is. A l l of the approximations used 
in this pseudo-diagonalization routine become valid at self-consistency, and further, the 
approach to self consistency is not slowed down (57). 

Given the lower half triangle of the matrix to be diagonalized in packed form, 
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the algorithm has three primary loop sequences that constitute the procedure (Scheme I: 
Task 2c, Loop over VARIABLES). The first two loops together perform the similarity 
transformation 

V*FV 

that transforms from the atomic orbital to the molecular orbital representation (F 
represents the Fock matrix). This representation ensures that the resulting eigenvectors 
are orthogonal, spanning the N-atom dimensional space. This step is followed by 
rotation, which eliminates off-diagonal elements. The matrix is then block diagonalized 
only, because only Fock elements connecting occupied and virtual orbitals must be zero 
at convergence. 

Two methods of parallel decomposition were investigated for the 
diagonalization procedure. The initial attempts distributed the work load over rows or 
columns of the matrix, i.e., control decomposition. This method resulted in timings 
that were actually significantly slower than the original unparallelized routine. This is 
due to large communication overhead from processing such small amounts of data. In 
addition, two utility routines were written to establish each node's starting work load 
position. Calls to these routines, along with additional global calls to gather and 
broadcasts to announce individual node data, resulted in extreme overhead costs. 

To avoid some of the complications of the above, a domain decomposition was 
employed. In this method, large groups or blocks of the matrix are distributed over 
nodes. Parallelization in this manner eliminates the need for broadcasting intermediate 
results. Only the final computed vectors are gathered via a global routine. 
Broadcasting of intermediate results is no longer necessary and scratch arrays already 
available are used for parallel decomposition so that no additional memory is required 
for this parallel method. 

3) Evaluation of derivatives. Additional CPU-intensive subroutines involved 
in the geometry optimization include those that carry out derivative evaluation (Scheme 
I: Task 3). The derivatives of the energy with respect to the internal coordinates is 
done via finite differences. The total work involves 3*N variables that can be 
distributed equally over the number of nodes. 

Vibrational Analysis Component 

Vibrational analysis (second-derivative evaluation) of molecular systems can be a 
formidable task. These calculations are, however, essential to characterize stationary 
points and to assess vibrational and thermodynamic properties of molecules. The 
vibrational analysis procedure involves construction of a 3*N dimensional matrix of 
second derivatives of energy with respect to Cartesian coordinates (Scheme Π). The 
calculation of each of these matrix elements represents an independent calculation, and 
the procedure holds the potential of being perfectly parallel. Following the calculation 
of matrix elements across nodes, the results are collected using a global routine and the 
full matrix diagonalized. 

The diagonalization of the matrix results in a set of eigenvectors, corresponding 
to the 3*N-6 vibrational motions, and a corresponding set of eigenvalues, which 
represent the respective vibrational frequencies of these motions. The other 6 
eigenvectors correspond to the rotational and translational motion, with associated zero 
eigenvalues (disregarding numerical artifacts). 

Scheme Π shows the vibrational analysis procedure. The parallelization of the 
vibrational analysis component requires partitioning 3*N variables over nodes to 
calculate a matrix of second derivative elements. Because this is a symmetric matrix, 
there are 3*N*(3*N +l)/2 unique elements to be computed. It is critical to maintain 
proper indices over the nodes as the results are calculated. A global routine is invoked 
to collect the matrix in preparation for diagonalization. 
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SCHEME I: Parallelization of Geometry Optimization 

Specific Loop Sequence 
Task 

Loop according to SCF criteria (COMPFG) 
1 =>Evaluation of Hamiltonian matrix elements (HCORE) 

Loop over total number of ATOMS 
* fill 1 e- diagonal/off diagonal of same atom 
* fill atom-other atom 1 e~ matrix (H1ELEC) 
* Calculate 2 e~ integrals 

Calculate e" - nuclear terms (ROTATE) 
Calculate nuclear-nuclear terms 

Merge 1 electron contributions private to each CPU 
2 ==>Formation of Fock matrix and Diagonalization (ITER) 
2a Loop over number of ATOMS 

* remaining 1 e- elements (FOCK1) 
* 2 e-/2-center repulsion elements of Fock matrix (FOCK2) 

2b Loop over number of ORBITALS 
* density matrix (DENSIT) 

2c Loop over matrix BLOCKS 
Diagonalization (DIAG) 

* Construct part of the secular determinant over MO's 
which connect soccupied & virtual sets. 

* Crude 2x2 rotation to ''eliminate'' significant elements. 
* Rotation of pseudo-eigenvectors. 

Merge contributions private to each CPU 
3 ==>Evaluation of Derivatives (DERTV) 

Loop over number of ATOMS 
* derivatives of energy w.r.t. Cartesians (DCART) 

Loop over number of VARIABLES 
* Jacobian: d(Cart)/d(internals) (JCARIN) 

Merge derivatives private to each CPU 

SCHEME Π: Parallelization of Vibrational Analysis 

Calculation of force constants and vibraional frequencies (FORCE) 
Loop over number of VARIABLES 

* Calculate second-order of the energy with repect to 
the Cartesian coordinates (FMAT) 

Merge second derivative components private to each CPU 
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Results 

Code performance was demonstrated on a large group of molecules (52) varying in 
symmetry construction and heavy atom/light atom ratios; only a few of these molecules 
are presented here to illustrate the general trends. Although a principal performance 
measure is the elapsed time necessary to solve the problem of interest, speedup shows 
more clearly the behavior of a parallel program as a function of the number of 
processors. Speedup is defined as the wall-clock time to run on 1 processor, divided 
by the time to run on ρ processors. For a perfectly parallelized code, speedup equals 
the number of processors. Single processor timings are taken as the best serial 
algorithm (In this case, timings for serial and parallel M O P A C on one node are 
identical, due to the particular method of parallelization.). 

The parallel procedures were first implemented on the Intel iPSC/860, and 
subsequently on the Intel Paragon, at the San Diego Supercomputer Center. Since the 
iPSC/860 had only 8 Mbyte nodes, the molecular constitution was limited to less than 
20 heavy atoms. In general, code performance is identical on both platforms with the 
exception of a 25% faster clock in the Paragon, thus shifting the resulting curves by the 
appropriate amount. The geometry optimization and vibrational analysis computations 
are illustrated for corannulene, which has 20 carbon and 10 hydrogen atoms (Figures 3 
and 4). One notices from these curves that, because of the faster clock in the Paragon, 
the workload per node is done faster, but the general trends are virtually identical. 

A l l molecules investigated serve as prototypes for the classes of molecules that 
we intend to study computationally for these types of methods. These include 
prototypes for aromatic carbon materials based on graphitic or fullerene motifs, 
prototypes for strained polycyclic hydrocarbon-based "energetic" materials, and 
prototypes for pharmacophores and bioreceptor substrates. For detailed discussion of 
Paragon performance, three molecules from the total set were chosen: norbornyne 
cyclotrimer, taxol derivative, and lophotoxin (Figure 5). 

Calculations were performed on node combinations up to approximately 128 32 
Mbyte processors. Optimization level 3, which incorporates global optimization and 
software pipelining, was invoked during code compilation. Speedups approaching 5 
and absolute Intel speeds of about half that of the C R A Y C90 were obtained. Figure 6 
shows a plot of CPU time versus number of processors for these three molecules. One 
finds a definite compartmentalization of data with respect to optimal number of 
processors for specific number of atoms in a molecular system. This graph shows an 
optimal performance of 64 nodes for the molecules considered, which range from 45-
60 atoms. Scanning the entire data base of molecules (20) shows the general rule of 
thumb. 

Number of nodes 
Number of atoms, η at optimal performance 

>29 64 
15 < η < 30 32 
9 <n<16 16 

< 10 8 

Running the calculation on more than this optimal number of nodes will be inefficient 
due to either a very small distribution of work across nodes, or some nodes being left 
completely idle. In some cases, performance is degraded due to the fact that the 
communications costs start to dominate due to many nodes transferring very small 
amounts of data. This is clearly seen in the performance plots of corannulene from the 
Paragon. 

Although the overall speedup appears inefficient for geometry optimization, 
individual task speedups illustrate the promise of parallelization. Figures 7 and 8 show 
the breakdown over the three tasks parallelized for lophotoxin and the taxol derivative, 
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106 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 3. Bar chart comparing the performance of the iPSC/860 and 
Paragon or the geometry optimization of corannulene. 

Figure 4. Bar chart comparing the performance of the iPSC/860 and 
Paragon for the vibrational analysis of corannulene. 
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Lophotoxin 

Figure 5. Molecular structures. 
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108 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 6. Speedup curve illustrating the variation in speedup with number of 
processors for a geometry optimization calculation for norbornyne 
cyclotrimer, taxol derivative and lophotoxin. 

Figure 7. Bar graph showing the effects of parallelization of the various tasks 
involved in the geometry optimization calculation for the taxol 
derivative. 

Figure 8. Bar graph showing the effects of parallelization of the various tasks 
involved in the geometry optimization calculation for lophotoxin. 
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respectively. The parallelization of the derivative routine is the most impressive, 
approaching a speedup factor of 25, while that of diagonalization and formation of 
matrix elements lag around 10 and 5, respectively. Geometry optimizations that 
involve a diagonalization task that is closer to 80% of the total time will obviously give 
much more impressive results. Notice especially, the decay of the calculation of the 
matrix elements after about 8 nodes. This task is generally the smallest effort of the 
three tasks, and, for the size of molecules considered here, does not have enough of a 
workload to keep more than about 8 nodes busy, before communication costs 
supersede work time. 

Timing results for the parallelized vibrational analysis procedure are very 
encouraging. For all molecules considered, the C R A Y speed is in the range 16-32 
Mflops. The Intel results on the other hand approach or, in the case of lophotoxin, 
exceed 200 Mflops. The vibrational calculations show nearly linear speedups for all 
sizes of molecules. As the work is distributed over more and more nodes, efficiency is 
lost, especially noted for very small molecules. One factor contributing to this loss is 
that there is less and less work to distribute over nodes. This is why the larger 
molecules show better performance than the smaller molecules. In addition, a latency 
effect could be contributing to a decrease in efficiency due to more nodes being 
involved in the global calls; this effect is uniform over all sized molecules. The 
speedups for the three molecules considered here clearly show a linear trend (Figure 9). 
The results are fairly uniform for molecules of similar size, because the primary task in 
any particular molecule is the calculation of 3N (N=#atoms) second derivatives of 
energy with respect to coordinates. 

An important issue here is the range of problem sizes for which the performance 
is acceptable. Keeping the number of processors fixed and increasing the problem size 
increases the amount of local computation each node does, therefore, performance is 
expected to improve for larger molecular systems. This is illustrated in Figures 10 and 
11 for 64 node results over the entire range of molecules for geometry optimization and 
vibrational analysis, respectively. Similar curves are obtained for the other node 
combinations. 

Discussion 

A major limitation on performance, particularly for the geometry optimization 
calculations, is the code memory requirement. Even for the largest molecules 
calculated, there is a noticeable asymptote in the speedup curve as the number of nodes 
increases. This is primarily because the molecular systems are relatively small in 
comparison to the number of nodes being allocated to do work, a restriction resulting 
from the memory constraints. The main problem in MOP A C stems from the rather 
poor structure of the code in terms of memory utilization. The use of replicated data 
parallel decomposition requires sufficient memory be held on each processor for the 
entire symmetric Hamiltonian and Fock matrix. As a result, all internal 
communications throughout parallelized MOPAC are carried out with fast-library global 
routines and not via sending/receiving packets of information. This method of 
parallelization was chosen in order to minimize the communication overhead and 
latency costs, which were observed to be extremely high, especially with the first levels 
of operating systems on the MIMD machines. There will still be startup time for these 
global routines that will contribute to the overall time costs, however, this is much less 
due to better algorithmic construction with global routines, and the fact that the global 
routines are faster than the send/receive routines. 

A second limitation, as noted for large biomolecular systems, is the instability 
of the geometry optimization algorithms. If one tries to calculate the structure of a 
large, floppy biomolecular system (i.e, > 100 atoms), there is a serious problem with 
convergence due to the many torsional degrees of freedom. The semiempirical 
algorithms that are currently available are not sensitive enough to instigate convergence. 

Unfortunately, due to the severe memory and algorithmic constraints, the goal 
of being able to calculate larger molecules than can be currently calculated with ab initio 
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Vibrational Analysis 

Figure 9. Speedup curve illustrating the variation in speedup with number of 
processors for a vibrational analysis calculation for nobornyne 
cyclotrimer, taxol derivative and lophotoxin. 

MOPAC Geometry Optimization 

Figure 10 Plot showing the increase in Mflop rate with increase in size of 
molecular system for a geometry optimization calculation. The 
molecules range in size from 8 atoms to 60 atoms. 

MOPAC Vibrational Analysis 

Figure 11. Plot showing the increase in Mflop rate with increase in size of 
vibrational analysis calculation. The molecules range in size from 
8 atoms to 60 atoms. 
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techniques has not been met. The declining cost of semiconductor memory makes it 
reasonable to assume that large-scale parallel computers will provide sufficient memory 
per node to accommodate much larger molecules with the existing software. In 
addition, memory need not be all semiconductor memory; one could think of employing 
common file system disk storage to accommodate large intermediate information such 
as integrals. Still, one will inevitably reach the limits of the increased memory 
capabilities. Therefore, we are currently investigating both algorithmic modifications 
and distributed memory capabilities. Distributed memory can potentially be handled 
with system routines, which allocate appropriate memory at the onset of the problem, 
or else hard coded dynamic memory using large fixed arrays in common with pointer 
capabilities. Preliminary results by this author (current work involves M O P A C 7.0 on 
the Intel Paragon and T3D platforms) as well as others (53) in this area show much 
more promise towards the calculation of molecules of the size of hundreds of atoms. 

Conclusions 

With (MIMD) computers clearing the way for record-breaking computation speeds, 
scientific programmers of the 90s are being pushed to the world of parallel 
programming. Massively parallel processors achieve their high speed by working on 
many parts of the problem in parallel. While it is difficult in many cases to structure a 
problem for efficient highly parallel solution, for those problems for which the 
technique is applicable, these computers are an increasingly important computational 
tool, especially for large and difficult chemistry problems. Thus, it is clear that 
implementing chemistry applications in parallel environments is a milestone for 
computational chemistry. 

In this work, we have demonstrated the promise as well as the difficulties 
involved in the implementation of semiempirical quantum chemistry applications on the 
Intel hypercube platforms. As the first level of implementation of these methods, we 
have employed a replicated data parallelism strategy. In this strategy, even though 
tasks are distributed over nodes, results of all distributed tasks are collected together on 
each node (replicated) at various points within the Hartree-Fock procedure, thereby 
causing limitations, especially for the geometry optimization calculation, due to the 
amounts of memory necessary to hold these quantities on each individual node. This 
severely limits the size molecular system that can be calculated and forces an 
unacceptably low ratio of processors to memory. With less than 32 Mbytes/node, the 
size of molecular systems that can be modeled is limited to less than 60 atoms, and the 
speedup saturates at 16 to 32 nodes. 

The vibrational analysis component shows more promise within the replicated 
data parallel implementation. The fact that the parallel implementation of the code 
performs similarly for large and small systems, allows us to extrapolate the results to 
predict that very large numbers of processors could be brought to bear on this problem 
given efficient global calls and memory. Analogously, this work has shown the 
potential for parallelization of the vibrational component within ab initio codes. 

Significant attention by this author as well as others (53) is now being given 
towards the implementation of these methods using a distributed data parallel strategy, 
which clearly shows to be superior in light of the known memory problems associated 
with these methods. In the distributed data parallel strategy, individual node tasks are 
not collected together on each node at any time during the calculation. Thus, 
performing a quantum mechanical calculation on a molecule of size Ν atoms, can be 
distributed over ρ processors such that only N/p amount of memory is ever needed on 
any individual node. This will allow our goals involving calculation of molecules with 
hundreds of atoms, and study of reaction paths and solvent effects of large systems to 
be a reality. 
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Chapter 9 

Parallel Molecular Dynamics Algorithms 
for Simulation of Molecular Systems 

Steve Plimpton and Bruce Hendrickson 

Parallel Computational Sciences Department 1421, Mail Stop 1111, 
Sandia National Laboratories, Albuquerque, NM 87185-1111 

Three classes of parallel algorithms for short-range classical molecular 
dynamics are presented and contrasted and their suitability for simulation 
of molecular systems is discussed. Performance of the algorithms on the 
Intel Paragon and Cray T3D in benchmark simulations of Lennard-Jones 
systems and of a macromolecular system is also highlighted. 

Molecular dynamics (MD) is a widely-used tool for simulating liquids and solids 
at an atomistic level [1]. Molecular systems such as polymers, proteins, and D N A 
are particularly interesting to study with M D because the conformational shape of 
the molecules often determines their properties. Such systems are computationally 
challenging to simulate because (1) in the absence of crystal periodicity large 
numbers of atoms must often be included in the model, and (2) interesting events 
such as molecular diffusion or conformational changes typically occur on long 
timescales relative to the femtosecond-scale timesteps of the M D model. 

M D simulations are natural candidates for implementation on parallel com
puters because the forces on each atom or molecule can be computed indepen
dently. M D simulations of molecular systems require computation of two kinds 
of interactions: bonded forces within the topology of the simulated molecules and 
non-bonded van der Waals and Coulombic forces. In this paper we limit our 
scope to short-range M D models where the non-bonded forces are truncated, 
so that each atom interacts only with other atoms within a specified cutoff dis
tance. Examples of widely-used commercial and research codes in this category 
include C H A R M M , GROMOS, A M B E R , and DISCOVER. While more accurate, 
M D models with long-range forces are more expensive to compute with, even if 
hierarchical methods [2] or multipole approximations [13] are used. However, in 
long-range force models there is a near-field component to the computation which 
requires a summation of pairwise interactions with near-neighbors. Parallelizing 

0097-6156/95A)592-0114$12.00/0 
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9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 115 

that portion of the computation is essentially the equivalent of the short-range 
force calculations we will discuss here. 

Several techniques have been developed by various researchers for paralleliz
ing short-range M D simulations effectively [11, 15, 20, 24]. The purpose of this 
paper is to describe the different methods and highlight their respective advan
tages and disadvantages when applied to molecules, be they small-molecule or 
macromolecular systems. We begin in the next section with a brief description 
of the computations that are performed in such M D simulations. The next three 
sections outline the three basic classes of parallel methods: replicated-data, force-
decomposition, and spatial-decomposition approaches. The three methods differ 
in how they distribute the atom coordinates among processors to perform the nec
essary computations. Although all of the methods scale optimally with respect to 
computation, their different data layouts incur different inter-processor commu
nication costs which affect the overall scalability of the methods. In the Results 
section we briefly describe two benchmark simulations to illustrate the perfor
mance and scalability of the parallel methods on two large parallel machines, an 
Intel Paragon and Cray T3D. The first benchmark is of a Lennard-Jones system 
with only non-bonded forces; the second is of a solvated myoglobin molecule. F i 
nally, the trade-offs between the three parallel methods are summarized in the 
conclusion. 

Computational Aspects 

In M D simulations of molecular systems two kinds of interactions contribute to 
the total energy of the ensemble of atoms — non-bonded and bonded. These 
energies are expressed as simple empirical relations [4]; the desired physics or 
chemistry is simulated by specifying appropriate coefficients. The energy Enb due 
to non-bonded interactions is typically written as 

(1) 

where the first term is Coulombic interactions and the second is van der Waals, 
r is the distance between atoms i and j , and all subscripted quantities are user-
specified constants. In short-range simulations, the summations over i and j 
are evaluated at each timestep so as to only include atom pairs within a cutoff 
distance r c , such that r < rc. The bonded energy Eb for the system in the 
harmonic approximation can be written as 

Eb= Σ Kbir-rof+Y, A'*(0-0 O ) 2 + £ Κφρ[1+άρϊ.οφιρφ)]+ £ Κφ(φ-φ0)2 

bonds angles dihedrals i m propers 

(2) 
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where the first term is 2-body energy, the second is 3-body energy, and the 
last two are 4-body interactions for torsional dihedral and improper dihedral 
energies within the topology of the molecules. The distance r and angles θ and 
φ are computed for each interaction as a function of the atomic positions; the 
subscripted quantities are constants. In contrast to the non-bonded energy, the 
summations in this equation are explicitly enumerated by the user to setup the 
simulation, i.e. the connectivities of the molecules are fixed. In the M D simulation, 
derivatives of Equations 1 and 2 yield force equations for each atom which are 
integrated over time to generate the motion of the ensemble of atoms. 

On a parallel machine with Ρ processors, if a simulation runs Ρ times faster 
than it does on one processor, it is 100% parallel efficient, or has achieved a perfect 
speed-up. In molecular simulations both non-bonded and bonded force terms 
must be spread uniformly across processors to achieve this optimal speed-up. 
Because atomic densities do not vary greatly in physical systems, the summations 
in Equation 1 imply that each atom interacts with a small, roughly constant 
number of neighboring atoms. Similarly, there are a small, fixed number of 2-, 
3-, and 4-body interactions in Equation 2 which each atom participates in. Thus, 
the computational effort in a macromolecular M D model scales linearly with N, 
the number of atoms in the simulation, and the optimal scaling a parallel method 
can achieve is as Ν/P. In any method, whether it scales optimally or not, any 
exchange of data via inter-processor communication or any imbalance among the 
processors in computing the terms in Equations 1 or 2 will reduce the parallel 
efficiency of the method. 

Conceptually, the computations in Equation 1 can be represented as a force 
matrix F where the (ij) element of F is the force due to atom j acting on atom 
i. The Ν χ Ν matrix is sparse due to short-range forces. To take advantage of 
Newton's 3rd law, we also set Fij = 0 when i > j and i + j is even, and likewise 
set = 0 when i < j and i + j is odd. Thus the interaction between a pair of 
atoms is only computed once. This zeroing of half the matrix elements can also be 
accomplished by striping F in various ways [23]. Conceptually, F is now colored 
like a checkerboard with red squares above the diagonal and black squares below 
the diagonal set to zero. The first two parallel methods we discuss in the next 
sections assign portions of this F matrix to different processors. 

Replicated-Data Method 

The most commonly used technique for parallelizing M D simulations of molecular 
systems is known as the replicated-data (RD) method [24]. Numerous parallel 
algorithms and simulations have been developed based on this approach [5, 8, 9, 
16, 17, 18, 22, 25]. Typically, each processor is assigned a subset of atoms and 
updates their positions and velocities for the duration of the simulation, regardless 
of where they move in the physical domain. 

To explain the method, we first define χ and / as vectors of length TV which 
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9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 117 

store the position and total force on each atom. Each processor is assigned a 
sub-block of the force matrix F which consists of N/P rows of the matrix, as 
shown in Figure 1. If ζ indexes the processors from 0 to Ρ — 1, then processor 
Pz computes non-bonded forces in the Fz sub-block of rows. It also is assigned 
the corresponding position and force sub-vectors of length N/P denoted as xz 

and fz. The computation of the non-bonded force Fij requires only the two atom 
positions xi and Xj. But to compute all the forces in Fz, processor Pz will need the 
positions of many atoms owned by other processors. In Figure 1 this is represented 
by having the horizontal vector χ at the top of the figure span all the columns of 
F. This implies each processor must store a copy of the entire χ vector - hence 
the name replicated-data. 

x 

*2 

Figure 1: The division of the force matrix among 8 processors in a replicated-data 
algorithm. Processor 2 is assigned Ν/Ρ rows of the matrix and the corresponding 
X2 piece of the position vector. In addition, it must know the entire position vector 
χ (shown spanning the columns) to compute the non-bonded forces in F2. 

The RD algorithm is outlined in Figure 2 with the dominating term in the 
computation or communication cost of each step listed on the right. We assume 
at the beginning of the timestep that each processor knows the current positions 
of all TV atoms, i.e. each has an updated copy of the entire χ vector. In step (1) 
of the algorithm, the non-bonded forces in matrix sub-block Fz are computed. 
This is typically done using neighbor lists to tag the interactions that are likely to 
be non-zero at a given timestep. In the parallel algorithm each processor would 
construct lists for its sub-block Fz once every few timesteps. To take advantage 
of Newton's 3rd law, each processor also stores a copy of the entire force vector J. 
As each pairwise non-bonded interaction between atoms i and j is computed, the 
force components are summed twice into / , once in location i and once (negated) in 
location j, so that Fz is never actually stored as a matrix. Step (1) scales as N/P, 
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the number of non-zero non-bonded interactions computed by each processor. 

(1) Compute non-bonded forces in Fz, 
Ν 
Ρ doubly summing results into local copy of / Ν 
Ρ 

(2) Compute 1/P fraction of bonded forces, 
summing results into local copy of / Ν 

Ρ 
(3) Fold / across all processors, result is fz Ν 
(4) Update atom positions in xz using fz 

Ν 
Ρ 

(5) E x p a n d xz among all processors, result is χ Ν 

Figure 2: Single timestep of the replicated-data algorithm for processor Pz. 

In step (2) the bonded forces in Equation 2 are computed. This can be done 
by spreading the loops implicit in the summations of Equation 2 evenly across the 
processors. Since each processor knows the positions of all atoms, it can compute 
any of the terms in Equation 2, and sum the resulting forces into its local copy 
of J. This step also scales as N/P, since there are a small, fixed number of 
bonded interactions per atom. In step (3), the local force vectors are summed 
across all processors in such a way that each processor ends up with the total 
force on each of its N/P atoms. This is the sub-vector fz. This force summation 
is a parallel communication operation known as a fold [12]. Various algorithms 
have been developed for performing the operation efficiently on different parallel 
machines and architectures [3, 12, 26]. The key point is that each processor must 
essentially receive N/P values from every other processor to sum the total forces 
on its atoms. The total volume of communication (per processor) is thus Ρ χ N/P 
and the fold operation thus scales as N. 

In step (4), the summed forces are used to update the positions and velocities 
of each atom. Finally, in step (5) the updated atom positions in xz are shared 
among all Ρ processors in preparation for the next timestep. This is essentially 
the inverse of step (3), and is a communication operation called an expand [12]. 
Since each processor must send its N/P positions to every other processor, this 
step also scales as N. 

The RD algorithm we have outlined divides the MD force computation and 
integration evenly across the processors; steps (1), (2) and (4) scale optimally 
as N/P. Load-balance will be good so long as each processor's subset of atoms 
interacts with roughly the same total number of neighbor atoms. If this does 
not occur naturally, it can be achieved by randomizing the order of the atoms 
initially [21] or by adjusting the size of the subsets dynamically as the simulation 
progresses to tune the load-balance [28]. The chief drawback to the RD algorithm 
is that it requires global communication in steps (3) and (5); each processor must 
acquire information held by all the other processors. As indicated above, this 
communication scales as N, independent of P. This means that if the number 
of processors used in the simulation is doubled, the communication portions of 
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the algorithm do not speed up. Practically speaking this limits the number of 
processors that can be used effectively. 

The chief advantage of the RD algorithm is that of simplicity, particularly for 
computation of the bonded force terms. The computational steps (1), (2), and 
(4) can often be implemented by simply modifying the loops and data structures 
in a serial or vector code to treat N/P atoms instead of N. The fold and expand 
communication operations (3) and (5) can be treated as black-box routines and 
inserted at the proper locations in the code. Few other changes are typically 
necessary to parallelize an existing code. 

Force-Decomposition Method 

A parallel algorithm that retains many of the advantages of the replicated-data 
approach, while reducing its communication costs, can be formulated by partition
ing the force matrix F by sub-blocks rather than rows, as illustrated in Figure 3. 
We call this a force-decomposition (FD) method [20]. Use of the method in the 
macromolecular M D code ParBond is described in [21]; a modified F D approach 
has also been implemented in a parallel version of C H A R M M [6]. 

The block-decomposition in Figure 3 is actually of a permuted force matrix F' 
which is formed by rearranging the columns of the original checkerboarded F in a 
particular way. As before, we let ζ index the processors from 0 to Ρ — 1; processor 
Pz owns and will update the N/P atoms stored in the sub-vector xz. If we order 
the xz pieces in row-order (across the rows of the matrix), they form the usual po
sition vector χ which is shown as a vertical bar at the left of the figure. Were we to 
have χ span the columns as in Figure 1, we would form the force matrix as before. 
Instead, we span the columns with a permuted position vector x', shown as a hori
zontal bar at the top of Figure 3, in which the xz pieces are stored in column-order 
(down the columns of the matrix). Thus, in the 16-processor example shown in 
the figure, χ stores each processor's piece in the usual order (0 ,1 ,2 ,3 ,4 ,14 ,15 ) 
while x' stores them as (0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15). Now the (ij) 
element of F' is the force on atom i in vector χ due to atom j in permuted vector 
x'. 

The Ff

z sub-block owned by each processor Pz is of size (N/y/P) x {Ν/VP). 
As indicated in the figure, to compute the non-bonded forces in F'ZJ processor 
Pz must know one piece of each of the χ and x' vectors, which we 
denote as xa and χ'β. As these elements are computed they will be accumulated 
into corresponding force sub-vectors fa and f β. The Greek subscripts a and β 
each run from 0 to \fP — 1 and reference the row and column position occupied by 
processor Pz. Thus for processor 6 in the figure, xa consists of the χ sub-vectors 
(4,5,6,7) and χ'β consists of the x' sub-vectors (2,6,10,14). 

The FD algorithm is outlined in Figure 4. As before, each processor has up
dated copies of the needed atom positions xa and χ'β at the beginning of the 
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0 1 2 3 

4 5 F 6 7 

8 9 10 11 

12 13 14 15 

Figure 3: The division of the permuted force matrix F' among 16 processors in 
the force-decomposition algonthm. Processor P 6 is assigned a sub-block F'Q of 
size Ν J y/P by N/ yfP. To compute the non-bonded forces in F'Q it must know 
the corresponding Ν/y/P-length pieces xQ and χ'β of the position vector χ and 
permuted position vector x'. 

timestep. In step (1), the non-bonded forces in matrix sub-block F ' Z are com
puted. As before, neighbor lists can be used to tag the Ο (N/P) non-zero interac
tions in F ' Z . As each force is computed, the result is summed into the appropriate 
locations of both fa and f $ to account for Newton's 3rd law. In step (2) each 
processor computes an N/P fraction of the bonded interactions. Since each pro
cessor knows only a subset of atom positions, this must be done differently than 
in the RD algorithm. For each set of 2, 3, or 4 atoms corresponding to a bonded 
interaction term in Equation 2, we must guarantee that some processor knows all 
the needed atom positions. This can be accomplished be ordering the atoms in 
the χ vector appropriately as a pre-processing step before the M D simulation is 
begun. A heuristic method for doing this is described in reference [21]. 

In step (3), the force on each processor's atoms is acquired. The total force on 
atom i is the sum of elements in row i of the force matrix minus the sum of elements 
in column i\ where i is the permuted position of column i. Step (3a) performs a 
fold within each row of processors to sum the first of these contributions. Although 
the fold algorithm used is the same as in the previous section, there is a key 
difference. In this case the vector fa being folded is only of length N/y/P and only 
the y/P processors in one row are participating in the fold. Thus this operation 
scales as N/y/F instead of Ν as in the RD algorithm. Similarly, in step (3b), a 
fold is done within each column of F ' . The two contributions to the total force 
are joined in step (3c). 
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(1) Compute non-bonded forces in F' Z, 
storing results in fa and f β Ν 

Ρ 
(2) Compute l/P fraction of bonded forces, 

Ν storing results in fa and f0 

Ν 

(3a) Fold / a within row a, result is fz 
Ν 

VP 
(3b) Fold f β within column result is fz 

Ν 

Ψ 
R 

(3c) Subtract f'z from fz, result is total fz 

Ν 

Ψ 
R (4) Update atom positions in xz using fz 

Ν 

Ψ 
R 

(5a) Expand xz within row a, result is xa 
Ν 

VP 
(5b) Expand xz within column /5, result is χ'β Ν 

VP 

Figure 4: Single timestep of the force-decomposition algorithm for processor Pz. 

In step (4), fz is used to update the N/P atom positions in xz. Steps (5a-5b) 
share these updated positions with all the processors that will need them for the 
next timestep. These are the processors which share a row or column with Pz. 
First, in (5a), the processors in row a perform an expand of their xz sub-vectors 
so that each acquires the entire xa. As with the fold, this operation scales as the 
N/y/P length of xa instead of as iV as it did in the RD algorithm. Similarly, in 
step (5b), the processors in each column β perform an expand of their xz. As a 
result they all acquire χ'β and are ready to begin the next timestep. 

As with the RD method, the FD method we have outlined divides the M D com
putations evenly among the processors. Step (1) will be load-balanced if all the 
matrix sub-blocks F ' Z are uniformly sparse. As with the RD method, a random
ized initial ordering of atoms produces the desired effect. The key enhancement 
offered by the FD method is that the communication operations in steps (3) and 
(5) now scale as N/y/~P rather than as Ν as was the case with the RD algorithm. 
When run on large numbers of processors this can significantly reduce the time 
spent in communication. Likewise, memory costs for position and force vectors 
are reduced by the same y/P factor. Finally, though more steps are needed, the 
FD approach retains the overall simplicity and structure of the RD method; it 
can be implemented using the same expand and fold communication routines. 

Spatial-Decomposition Method 

The final parallel method we describe exploits the locality of the short-range 
forces by assigning to each of the Ρ processors a small region of the simulation 
domain. As illustrated in Figure 5 this is a geometric- or spatial-decomposition 
(SD) of the workload. For reasons that will be outlined below, there have been 
fewer implementations of short-range macromolecular M D simulations using this 
method [7, 10, 27] than with RD approaches. 
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Figure 5: The division of the 3-D periodic simulation domain among 64 processors 
in a spatial-decomposition algorithm. With this force cutoff distance (arrow), pro
cessor Pz only need communicate with the 26 nearest-neighbor processors owning 
the shaded boxes. 

The SD algorithm is outlined in Figure 6. Processor ζ owns the box labeled 
Dz and will update the positions xz of the atoms in its box. To compute forces on 
its atoms a processor will need to know not only xz but also positions yz of atoms 
owned by processors whose boxes are within a cutoff distance rc of its box. As it 
computes the forces fz on its atoms, it will also compute components of forces gz 

on the nearby atoms (Newton's 3rd law). 

We again assume that current xz and yz positions are known by each processor 
at the beginning of the timestep. With these definitions, steps (1) and (2) of the 
algorithm are the computation of non-bonded and bonded forces for interactions 
involving the processor's atoms. These steps scale as the number of atoms N/P in 
each processor's box. In step (3) the gz forces computed on neighboring atoms are 
communicated to processors owning neighboring boxes. The received forces are 
summed with the previously computed fz to create the total force on a processor's 
atoms. The scaling of this step depends on the length of the force cutoff relative 
to the box size. We list it as Δ and discuss it further below. Step (4) updates the 
positions of the processor's atoms. In step (5) these positions are communicated 
to processors owning neighboring boxes so that all processors can update their 
y ζ list of nearby atoms. Finally in step (6), periodically (usually when neighbor 
lists are created), atoms which have left a processor's box must be moved to the 
appropriate new processor. 

The above description ignores many details of an effective SD algorithm [20], 
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(1) Compute non-bonded forces in Dz, 
summing results into fz and gz 

Ν 
Ρ 

(2) Compute bonded forces in Dz, 
Ν 
Ρ summing results into fz and gz 

Ν 
Ρ 

(3) Share gz with neighboring processors, 
summing received forces into my fz Δ 

(4) Update atom positions in xz using fz 
Ν 
Ρ 

(5) Share xz with neighboring processors, 
using received positions to update yz Δ 

(6) Move atoms to new processors as necessary Δ 

Figure β: Single timestep of the spatial-decomposition algorithm for processor Pz. 

but it is clear that the computational scaling of steps (1), (2), and (4) is again the 
optimal N/P. The scaling of the communication steps (3), (5), and (6) is more 
complex. In the limit of large N/P ratios, Δ scales as the surface-to-volume ratio 
(N/P)W^ of each processor's box. If each processor's box is roughly equal in size 
to the force cutoff distance, then Δ scales as N/P and each processor receives 
N/P atom positions from each of its neighboring 26 processors (in 3-D), as in 
Figure 5. In practice, however, there can be several obstacles to minimizing Δ 
and achieving high parallel efficiencies for a SD method in M D simulations of 
molecular systems. 

(A) Molecular systems are often simulated in a vacuum or with surrounding 
solvent that does not uniformly fill a 3-D box. In this case it is non-trivial to 
divide the simulation domain so that every processor's box has an equal number 
of atoms in it and yet keep the inter-processor communication simple. Load-
imbalance is the result. 

(B) Because of the 1/r dependence of Coulombic energies in Equation 1, long 
cutoffs are often used in simulations of organic materials. Thus a processor's box 
may be much smaller than the cutoff. The result is considerable extra communi
cation in steps (3) and (5) to acquire needed atom positions and forces, i.e. Δ no 
longer scales as N/P, but as the cube of the cutoff distance rc. 

(C) As atoms move to new processors in step (6), molecular connectivity in
formation must be exchanged and updated between processors. The extra coding 
to manipulate the appropriate data structures and optimize the communication 
performance of the data exchange subtracts from the parallel efficiency of the 
algorithm. 

In general, SD methods are more difficult to integrate into large, existing codes 
than are RD or even FD methods. This fact, coupled with the potential for other 
parallel inefficiencies just outlined (A-C), has made SD implementations less com
mon than RD for macromolecular M D codes. However, in terms of their optimal 
communication scaling they are clearly the method of choice for very large sim-
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illations. Additionally, for M D codes that include long-range force interactions 
via multipole methods [13], SD methods are a natural choice for performing the 
near-field pair wise computations. This is because the far-field multipole contri
butions to the forces are computed on a hierarchy of spatial grids that correspond 
to coarsened versions of the fine grid pictured in Figure 5. 

Results 

In this section we highlight the performance of the three parallel M D algorithms 
just described on two large parallel machines, an 1840-processor Intel Paragon 
at Sandia running the SUNMOS operating system [19] and a 512-processor Cray 
T3D at Cray Research. The same F77 codes were run on both machines; only a 
few lines of code are machine-ispecific calls to native send and receive message-
passing routines. 

The first set of results are for a benchmark simulation of Lennard-Jonesium 
[20]; just the second non-bonded term in Equation 1 is included in the force model. 
A 3-D periodic box of atomic liquid is simulated with a standard force cutoff 
of 2.5σ encompassing an average of 55 neighbors/atom. The C P U time per M D 
timestep is shown in Figure 7 for runs of various sized systems on single processors 
of the Cray Y - M P and C90 and on 1024 processors of the Intel Paragon. The code 
run on the Y - M P and C90 is a slightly modified version of the algorithm of Grest 
et al. [14] which vectorizes completely and has produced the fastest timings to date 
for this benchmark on conventional vector supercomputers [14, 20]. The Paragon 
timings are for codes which implement the three parallel algorithms discussed 
in the previous sections: replicated-data (RD), force-decomposition (FD), and 
spatial-decomposition (SD); more details are given in reference [20]. The three 
timing curves for 512 processors of the Cray T3D are virtually identical to these 
(to within a few percent), meaning the T3D's computation and communication 
rates for these codes are twice as fast as the Paragon on a per-processor basis. 

The data in the figure show that, as expected, all of the algorithms scale 
linearly with Ν in the large Ν limit. The timings for FD are faster than RD for 
all sizes, due to FD's reduced communication cost. For small problems, FD is 
the fastest of the three parallel algorithms; for larger sizes SD quickly becomes 
the fastest method. For large TV the difference in timings between the three 
algorithms is due to their relative communication costs; all of them are essentially 
equivalent with respect to parallelizing the computational portions of the timestep 
calculation. 

It is worth noting that this is a benchmark problem for which the SD approach 
is ideally suited. The simulated atoms uniformly fill a 3-D box which can be eas
ily partitioned equally among the processors. More irregular problems would lead 
to load-imbalance which would reduce the parallel efficiency of the SD method, 
but not the F D and R D methods. Also, the crossover size at which SD becomes 
faster than FD is a function of Ρ and of several features of the benchmark, in 

D
ow

nl
oa

de
d 

by
 O

H
IO

 S
T

A
T

E
 U

N
IV

 L
IB

R
A

R
IE

S 
on

 J
un

e 
29

, 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 1
7,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
00

9

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



9. PLIMPTON & HENDRICKSON Parallel Molecular Dynamics Algorithms 125 

Figure 7: CPU timings (seconds/timestep) for the three parallel algorithms on 
1024 processors of the Intel Paragon for different problem sizes. Single-processor 
Cray Y-MP and C90 timings are also given for comparison. 

particular the cutoff distance. Consider the case where the cutoff is increased to 
5.0σ to encompass 440 neighbors/atom. This is more typical of the cutoffs used 
in charged systems to include more of the longer-range Coulombic interactions. 
There is now 8 times as much computation per atom to be performed in all of the 
parallel methods. In the SD method there is also 8 times as much communica
tion to acquire atoms within the cutoff distance, so the ratio of communication to 
computation is unchanged. By contrast, in the RD and F D methods, the amount 
of communication is independent of the cutoff distance, so the ratio of communi
cation to computation is reduced and the parallel efficiency of the methods goes 
up. The net effect is to shift the crossover size where SD becomes faster to larger 
N. In practice this can be many tens of thousands of atoms [20]. 

The timing data in Figure 7 also indicate what is feasible on current-generation 
parallel supercomputers for short-range M D simulations of Lennard-Jones sys
tems. On the million-atom simulation the 1024-processor Paragon is running 
at 0.199 seconds/timestep, about 30 times faster than a C90 processor (extrap
olated). Similarly the 512-processor T3D runs at 0.205 seconds/timestep. If all 
1840 nodes of Sandia's Paragon are used, if the dual-processor mode is enabled 
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where a second i860 processor on each node normally used for communication 
is used for computation, and if the Lennard-Jones force computation kernel is 
written in assembler rather than Fortran, these timing numbers can be improved 
by about a factor of 4-5 for large Ν [20]. The million-atom simulation then runs 
at 0.045 seconds/timestep (80,000 timesteps/hour) and 100,000,000 atoms can be 
simulated in 3.53 seconds/timestep, about 165 times faster than a C90 processor. 

Timing results for a macromolecular simulation of myoglobin using the force 
model of Equations 1 and 2 are shown in Figure 8. This is a prototypical pro
tein benchmark proposed by Brooks et al. [5] who have done extensive testing 
of a variety of machines with C H A R M M for this problem. A 2534-atom myo
globin molecule (with an adsorbed CO) is surrounded by a shell of solvent water 
molecules for a total of 14,026 atoms. The resulting ensemble is roughly spherical 
in shape. The benchmark is a 1000-timestep simulation performed at a tempera
ture of 300° Κ with a non-bonded force cutoff of 12.0 Â. Neighbor lists are created 
every 25 timesteps with a 14.0 Â cutoff. 

τ 1 1 1 1 1 1 1 1 1 Γ 

J I I I I I I I I I L 

1 2 4 8 16 32 64 128 256 5121024 

Number of Processors 

Figure 8: CPU timings (seconds/timestep) on different numbers of processors 
for a 14026-atom myoglobin benchmark. The squares are timings for replicated-
data implementations; circles are for force-decomposition. Timings for the filled 
symbols are from reference [5]. 

A l l of the filled symbols in the figure are timings due to Brooks et al. [5]. 
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The single processor Cray Y - M P timing of 3.64 secs/timestep is for a version of 
C H A R M M they have optimized for vector processing. They have also developed a 
parallel version of C H A R M M [5] using a RD algorithm similar to out replicated-
data method. Timings with that version on an Intel iPSC/860 and the Intel Delta 
at CalTech are shown in the figure as filled squares. 

We have implemented both RD and FD algorithms in a parallel M D code for 
molecular systems we have written called ParBond. It is similar in concept (though 
not in scope) to the widely-used commercial and academic macromolecular codes 
C H A R M M , A M B E R , GROMOS, and DISCOVER. In fact, ParBond was designed 
to be CHARMM-compatible in the sense that it uses the same force equations as 
C H A R M M [4], Since the RD and FD methods both use the same communication 
primitives, ParBond simply has a switch that partitions the force matrix either 
by rows or sub-blocks as in Figures 1 and 3. 

Timings for ParBond on the Intel Paragon using the RD and F D described 
earlier are shown by the upper set of open squares and circles respectively in 
the figure. Taking into account that the Î860XP floating point processors in the 
Paragon are about 30% faster than the i860XR chips in the iPSC/860 and Delta 
and that inter-processor communication is significantly faster on the Paragon, 
the two sets of RD timings (filled and open squares) are similar. Both curves 
show a marked roll-off in parallel efficiency above 64-128 processors due to the 
poor scaling of the expand and fold operations. This is typical of the results 
reported in references [8, 9, 16, 17, 18, 22, 25] for RD implementations of other 
macromolecular codes such as C H A R M M , A M B E R , and GROMOS on a variety 
of parallel machines. Parallel efficiencies as low as 10-15% on a few dozens to 
hundreds of processors are reported and in some cases the overall speed-up is 
even reduced as more processors are added due to communication overheads. The 
implementation of Sato et al. [22] is a notable exception which achieves parallel 
efficiencies of 32 and 44% on 512 processors for their two benchmark calculations. 

By contrast the FD algorithm timings in ParBond (open circles) for the Paragon 
fall off less rapidly as processors are added; it is running 1.3 times faster than its 
RD counterpart on 256 processors (0.265 secs/timestep vs. 0.347) and 2.1 times 
faster on 1024-processors (0.0913 secs/timestep vs. 0.189). In other macromolec
ular simulations it has performed up to 3.3 times faster than the RD algorithm 
on 1024 Paragon processors [21]. The 1024-processor Paragon timing for FD in 
Figure 8 is about 40 times faster than the single Y - M P processor timing. The long 
dotted line in the figure represents perfect speed-up or 100% parallel efficiency for 
the ParBond code on the Paragon extrapolated from an estimated one-processor 
timing. The F D algorithm still has a relatively high parallel efficiency of 61% on 
1024 processors, as compared to 30% for the RD timing. 

Cray T3D timings on 64-512 processors are also shown in the figure for Par-
Bond using the RD and FD algorithms (lower set of open squares and circles). 
They are shifted downward be a factor of 10 so as to not overlay the Paragon data. 
A short dotted reference line is provided by shifting the Paragon perfect speed-up 
line down by a factor of 10 as well. The FD timings on the T3D are about 25% 
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faster than their Paragon counterparts on the same number of processors. This is 
less than the 2x factor on the Lennard-Jones benchmark for two reasons. First, 
the ratio of single-processor computation rates between the T3D and Paragon is 
not as high for ParBond, indicating more optimization work needs to be done on 
the T3D version of the code. Second, the computation-to-communication ratio 
is higher in this benchmark because of the longer cutoffs and more complicated 
force equations. Thus there is relatively less time spent in communication, and the 
T3D's higher effective communication bandwidth (due to its 3-D torus topology 
vs. a 2-D mesh for the Paragon) is less of a factor. These are also the reasons the 
FD algorithm is less of a win relative to a RD approach on the T3D; the advantage 
of F D is its communication scaling and the RD implementation on the T3D is 
only spending a small fraction of its time in inter-processor communication. 

We are not aware of any spatial-decomposition (SD) implementations of this 
myoglobin benchmark to compare with the RD and FD results presented here. 
Because the atoms fill a spherical volume instead of a box and because the cutoff 
distance is relatively long (950 neighbors/atom), we would expect an SD approach 
on hundreds or thousands of processors to have difficulty matching the 61% par
allel efficiency of the F D algorithm on 1024 Paragon processors for this problem. 
However, in principle, for larger (or more uniform) molecular systems even higher 
efficiencies should be possible with SD methods. We briefly describe three notable 
efforts in this area. 

Esselink and Hilbers have developed their SD model [10] for a 400-processor 
T800 Transputer machine. They partition uniform domains in 2-D columns with 
the 3rd dimension owned wholly on processor and have achieved parallel efficien
cies on regular problems of as high as 50%. Clark et al. have implemented a 
more robust 3-D SD strategy in their recently developed EulerGROMOS code 
[7], By recursively halving the global domain across subsets of processors, each 
processor ends up with a rectangular-shaped sub-domain of variable size which 
may not align with its neighbors. This allows irregular-shaped global domains to 
be partitioned across processors in a load-balanced fashion at the cost of extra 
communication overhead. They report a parallel efficiency of roughly 10% on 512 
processors of the Intel Delta at CalTech for a 10914-atom benchmark computa
tion of solvated myoglobin with a 10.0 Â cutoff in a uniformly filled 3-D box. 
Finally, Windemuth, has also implemented a novel solution to the load-balancing 
problem for irregular-shaped domains in his SD code P M D [27]. He defines one 
Voronoi point per processor scattered throughout the simulation domain. The 
domain is then tesselated so that each processor ends up owning the physical 
region of volume closest to its Voronoi point. By adjusting the position of the 
Voronoi points as the simulation progresses and re-tesselating, the simulation can 
keep the volume (work) per processor roughly constant and thus insure continued 
load-balance even for non-uniform atom densities. 
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Conclusions 

We have discussed three methods suitable for parallelizing M D simulations of 
molecular systems. Their basic characteristics are summarized in Figure 9. The 
scalability of the computation and communication portions of the algorithms are 
listed in the first two columns as a function of number of atoms Ν and number 
of processors P. To first order all the methods parallelize the M D computation 
optimally as N/P. (Strictly speaking, this ignores some costs in neighbor list 
construction which are typically small contributions to the total computational 
cost [20]). The chief difference in the methods is in communication cost where 
the SD method is a clear winner in the large Ν limit. Memory costs are listed in 
the 3rd column. In practice, the O(N) cost of RD methods can limit the size of 
problems that can be simulated [5, 21], while on current parallel machines the FD 
and SD methods are more limited by compute power than by memory. 

Method Computation Communi
cation 

Memory Ease of 
Coding 

Load 
Balance 

RD 
Ν 

Ρ Ν Ν simple 
geometry-
insensitive 

FD 
Ν 

Ρ 

Ν Ν 
moderate 

geometry-
insensitive 

SD 
Ν 

Ρ [Τ Ν 

Ρ 
complex 

geometry-
sensitive 

Figure 9: Comparative properties of three parallel methods for short-range molec
ular dynamics simulations: replicated-data (RD), force-decomposition (FD), and 
spatial-decomposition (SD). The scalability of the algorithm's computation, com
munication, and memory requirements when simulating Ν atoms on Ρ processors 
is listed. The relative ease of implementation and load-balancing characteristics 
of the three methods are also shown. 

In the fourth column the relative ease of coding or implementing the three 
methods for molecular simulations is listed; RD is the most straightforward, F D 
requires more work to handle bonded interactions correctly, and SD is the most 
complex of the three in terms of data structures and communication of molecular 
connectivity as molecules move from processor to processor. Finally, the load-
balancing properties of the methods are listed in the last column. Both the RD 
and FD methods are geometry-insensitive, meaning the processor's workload does 
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not change as atoms move within the physical domain. In other words, simulations 
of irregular-shaped domains are no more difficult to load-balance than regular 
domains. By contrast, SD methods are sensitive to the spatial location of the 
molecules. Load-imbalance can result if particle densities are non-uniform. 
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Chapter 10 

Portable Molecular Dynamics Software 
for Parallel Computing 

Timothy G. Mattson1 and Ganesan Ravishanker2 

1Intel Corporation, Supercomputer Systems Division, Mail Stop C06-09, 
14924 Northwest Greenbrier Parkway, Beaverton, OR 97009 

2Department of Chemistry, Hall-Atwater Labs, Wesleyan University, 
Middletown, CT 06457 

In this paper, we describe a parallel version of Wesdyn; a molecular 
dynamics program based on the GROMOS force field. Our goal was to 
approach the parallelization as software engineers and focus on portability, 
maintainability, and ease of coding. These criteria were met with an SPMD, 
loop-splitting algorithm that used a simple owner-computes-filter to assign 
loop iterations to the nodes of the parallel computer. The program was 
implemented with TCGMSG and Fortran-Linda and was portable among 
MIMD parallel computers. We verified the portability by running on several 
different MIMD computers, but only report workstation cluster results in 
this chapter. 

Molecular dynamics (MD) simulations are extremely compute intensive and re
quire supercomputer performance to provide answers in a reasonable amount of 
time. Given the high cost of supercomputers, there is a great deal of interest 
among the users of M D software to utilize the most cost effective supercomputers 
- those based on parallel and distributed architectures. 

The algorithms needed to utilize parallel computing are well understood [5], so 
one might expect parallel computers to play a dominant role in M D . In practice, 
however, very few M D users utilize parallel systems. The reason for this is simple 
- while the hardware for parallel computing is readily available, the application 
software isn't. This state of affairs is due to the dusty deck problem: users of 
M D simulations depend on established programs that are not officially supported 
for execution on parallel systems. The problems of dealing with these codes is 
further complicated because they were developed long before the advent of parallel 
computers and are poorly structured for these systems. 

0097-6156/95/0592-0133$12.00/0 
© 1995 American Chemical Society 
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134 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

One solution to the dusty deck problem is to replace the old programs with 
new software designed to take advantage of parallel computers. M D programs, 
however, have been painstakingly developed over the years and have attracted a 
dedicated following. Those using these codes are unlikely to replace their tried-
and-true M D programs with modern, unfamiliar codes. Hence, there is no way 
around the painful reality: to move M D simulations onto parallel computers, these 
old dusty deck programs must be ported to parallel systems. 

In principle, one should have to parallelize only one of the popular M D pro
grams and reuse the computational kernels among the other codes to yield a full 
set of parallel M D programs. Unfortunately, this is not practical. M D programs 
are tightly inter-twined with their force fields. These force fields embody the sci
ence of the M D codes and have been designed for different types of problems. The 
result is that the M D user community needs all the various M D programs so each 
of these must be parallelized separately with little code sharing. 

Given the need to port so many established M D programs to multiple parallel 
computers, the major outstanding problems in parallel M D pertain to software 
engineering - not algorithm design. Therefore, we decided to explore paralleliza
tion of M D programs from a software engineer's perspective. Our first test case is 
W E S D Y N [3] - a molecular dynamics program based on the GROMOS [2] force 
field. We set the following guidelines for the parallelization project: 

• Design the parallel algorithm so any changes to the sequential code will be 
simple and well isolated. 

• Implement the changes so the parallel and sequential programs can be main
tained within the same source code. 

• Support portable execution of the parallel code among different MIMD par
allel systems. 

While important, performance of the parallel program was a secondary concern 
relative to the issues of quality software engineering. In addition, the primary 
target was modest numbers of clustered workstations, though we wanted to write 
portable code that could easily move to moderate sized M I M D parallel computers 
as well. 

We believe that focusing on moderate parallelization is appropriate relative to 
the needs of the broadest category of users. While the National Supercomputer 
Centers provide some access to supercomputers, the available time on these ma
chines is scarce. By producing a well engineered code that runs on modestly sized 
parallel systems, we provide a program that benefits the majority of users. 

The paper begins by describing the sequential W E S D Y N program. This is 
followed by a discussion of the parallel version of the code using Fortran-Linda [11] 
and T C G M S G [6], While we verified portability by running on several parallel 
systems, we only present results for workstation clusters in this chapter. This 
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10. MATTSON & RAVISHANKER Portable Molecular Dynamics Software 135 

decision was made since the results for the M I M D computers are preliminary and 
require additional analysis prior to publication. 

The Sequential WESDYN program 

W E S D Y N [3] is a molecular dynamics program which uses the GROMOS [2] force 
field. The program has been heavily used at a number of sites, particularly for 
the simulations of DNA, proteins and protein-DNA complexes. It is particularly 
well known for is its optimization for vector supercomputers from Cray Research. 

Before describing the program in detail, consider a high level view of a molecu
lar dynamics simulation. Molecular dynamics programs simulate atomic motions 
within a molecular system by using a simplified representation of the molecular 
forces. In the course of the computation, the molecular system evolves through 
many successive time steps where for each time step: 

• Compute bonded energies and forces. 

• Compute non-bonded energies and forces. 

• Integrate classical equations of motion to propagate to the next time step. 

While the non-bonded energies include terms that require all pairs of atoms to 
interact, in most M D programs, only those atoms within a preset cutoff distance 
are included. This list of neighbors for the non-bonded calculation is computed 
every 10 to 50 steps. In addition, it is sometimes important to constrain the 
system to known physical limits using the shake algorithm [13] and/or velocity 
scaling. 

Finally, most intesting molecular processes do not take place in a vacuum 
so a large number of solvent molecules must be included within the simulated 
system. To prevent artifacts in the simulation due to the size of the simulation 
box, appropriate boundary conditions must be applied to the system. 

In W E S D Y N , Hexagonal Prizm Boundary (HPB) conditions [4] are used. The 
HPB algorithm applies periodic boundary conditions across the faces of hexagonal 
prizm unit cells. The first set of neighboring cells are along each of the six sides 
of the prizm. This 7 cell ensemble is then stacked on top and on bottom to give 
a total of 20 neighbors for any cell. 

In the figure 1, we provide pseudo code for W E S D Y N . The program begins 
with the input of user data. Based on this input, the program carries out a 
number of energy minimization steps to reduce strain within the initial structure. 
This energy minimization uses the same force field as is used in the dynamics 
simulation itself - even to the point of calling many of the same energy routines. 

Once a low energy initial structure has been found, the molecular dynamics 
time-stepping loop is entered. For the first step and at fixed intervals thereafter, 
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136 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

program WESDYN 
PROCESSJJSER.COMMANDS 
READ_MOLECULAR_TOPOLOGY_FILE 
READ_CARTESIAN_COORDINATES 
READ_INITIAL_VELOCITIES 
MINIMIZE_ENERGY_OF_INITIAL_STRUCTURE 
do i = l,number_of ..steps 

i f (TIME_TQ_UPDATE_NON_BQNDED_NEIGHBOR_LIST) then 
EVALUATE_NON_BONDED_NEIGHBOR_LIST 

endif 
CALCULATE.INTERNAL_COORDINATE_ENERGIES_AND_FORCES 
CALCULATE.GEOMETRIC_CENTERS_OF_CHARGE_GROUPS 
CALLJIBSTST ! evaluate solute-solute energies and forces 
CALLJiBSTSV ! evaluate solute-solvent energies and forces 
CALLJJBSVSV ! evaluate solvent-solvent energies and forces 
INTEGRATE_EQUATIONS_OF_MOTION 
i f (SHAKE.REQUESTED) then 

APPLY.SHAKE 
endif 
i f (TEMPERATURE_OFF_LIMITS) then 

RESCALE.VELOCITIES 
endif 

end do 
end WESDYN 

Figure 1: Pseudo-code description of the original sequential version of W E S D Y N 
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subroutine NBSTST 
do i = 1,number.of_charge_groups 

number_of_interacting_groups = 
C0LLECT_ALL_GR0UPS_WITHIN_CUT0FF 

do j = 1,number.of_interacting_groups 
SWITCH = 

CALCULATE.SWITCHING.FUNCTION(group(i),group(j)) 
do k = l,number_of_atoms(group(i)) 

do 1 = l,number_of_atoms(group(j)) 
Ε = Ε + SWITCH * 

ENERGY(atom(k,group(i)),atom(l,group(j))) 
F.PAIR = FORCE(atom(k,group(i)),atom(l,group(j))) 
F(atom(k,group(i))) = F(atom(k,group(i))) 

+ SWITCH * F_PAIR 
F(atom(l,group(j))) = F(atom(l,group(j))) 

- SWITCH * F.PAIR 
end do 

end do 
end do 

end do 
end NBSTST 

Figure 2: Pseudo-code description of NBSTST. 

a list of groups within a certain cutoff distance is computed. This list plays a 
key role in the later computation of non-bonded forces and energies. For every 
time step, internal energies and forces are computed. This is followed by the 
computational core of the program - the computation of non-bonded forces and 
energies. This computation is split between three routines: 

• NBSTST: Non-bonded routine for solute-solute interactions. 

• NBSTSV: Non-bonded routine for solute-solvent interactions. 

• NBSVSV: Non-bonded routine for solvent-solvent interactions. 

These non-bonded energy routines loop over all charge groups within the molecule. 
A l l groups within the cutoff are collected together and then two loops sum force 
and energy contributions for each pair of interacting groups. The structure of these 
routines are the same so we only show pseudo-code for one of them in figure 2. 

Once the energies and full force vectors have been assembled, the system is 
advanced to the next time step by integrating the equations of motion. This 
uses a leap frog integrator [13]. Optionally, the program enforces a set of input 
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138 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

constraints with the shake algorithm [13] and if necessary scales the velocities to 
keep the system temperature within the preset simulation value. 

The parallel WESDYN program 

We called the parallel version of W E S D Y N , ρ W E S D Y N . Out first decision was 
which of the many parallel M D algorithms to use. It is well known that for the 
best performance on massively parallel machines, a method based on a spatial 
domain decomposition [5] is required. These algorithms, however, are difficult 
to program and requires extensive modification to the sequential version of the 
program. This violates our goals to maintain a single version of the program's 
source code as well as the need for simple parallelization. 

Parallel M D algorithms based on atom (or atom group) decompositions, how
ever, are simple to program requiring few modifications to the sequential code. 
These methods do not scale well for large numbers of nodes, but with our principle 
target being workstation clusters, this was not a problem. 

When parallelizing programs, it is important to focus on the computational 
bottlenecks. In molecular dynamics, the computational bottlenecks are the non-
bonded energy computations which usually consume more than 90% of the total 
elapsed compute time. Generation of the non-bonded interaction lists is also com
pute intensive (complexity 0(N 2 )) , but since this is only carried out occasionally 
we did not parallelize this operation. 

To parallelize the non-bonded computation, we used a technique known as 
loop splitting [9]. In a loop splitting algorithm, the program is organized as an 
SPMD code with the principle data structures (forces and coordinates) replicated 
on each node. This lets one express the parallelism by assigning loop-iterations to 
different nodes of the computer. Rather than fixing a particular partitioning into 
the code, we used an owner-computes filter. In this method, an if-statement 
at the top of the loop tests to see if the node owns that particular iteration of 
the loop. This if-statement filters the loop iterations so different nodes compute 
different iterations. The advantage of this method is the simplicity with which it 
can be added to code. It also provides a great deal of flexibility to the programmer 
exploring different load balancing algorithms. 

The loop splitting method can be applied to each time-consuming part of the 
program. We choose, however, to only parallelize the non-bonded energy terms 
and then redundantly update the sequential portions of the code. This seems 
wasteful, but given the slow performance of local area networks, it was deemed 
appropriate since it can be faster to compute these terms than to communicate 
them. For larger systems (50,000 atoms and larger) and larger numbers of nodes, 
it is important to parallelize the routines that generate the non-bonded lists. We 
have only recently done this and will address this in a later paper. 

Once the basic algorithm was selected, we had to select a programming envi-
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ronment that would support parallel computing on a network of workstations as 
well as more traditional parallel computers. We used two programming environ
ments in this project: Fortran-Linda [11] and T C G M S G [6]. 

While a full description of Linda is well beyond the scope of this paper, we 
need to understand just enough of Linda to follow the pseudo code for pWES-
D Y N . Linda [7] is based on a virtual shared memory through which all interaction 
between processes is managed. These memory operations are added to a sequen
tial language to create a hybrid parallel programming language. For example, in 
ρ W E S D Y N , the combination of Fortran and Linda was used [11]. 

Linda consists of four basic operations. The first operation is called eval ( ) . 
This operation spawns a process to compute the value returned by a user provided 
function. When the function is complete, the value is placed into Linda's shared 
memory. The second operation, called out(), does the same thing as eval() 
except out() doesn't spawn a new process to compute the values to deposit into 
Linda's shared memory. In other words, eva lO is parallel while out() is sequen
tial. 

The other two Linda operations are used to extract information from the shared 
memory. If some process wishes to fetch some data and remove it so no other 
process can grab the item, the in() instruction is used. Finally, the rd() operation 
grabs the data but leaves a copy behind for other processes. 

The last concept to cover is how the programmer specifies which items to 
access in Linda's shared memory. Items in Linda's shared memory are accessed 
by association - not by address. In other words, the Linda programmer describes 
the data they are looking for and the system returns the first item in shared 
memory that matches that description. If nothing matches the description, the 
Linda operation blocks (i.e. waits) until such an item exists. This description, 
called a template, plays a key role in Linda. 

Templates are defined in terms of the number, types and values of the ar
guments to in() or rd() . In addition, it is frequently necessary to indicate a 
location in the program's memory (not Linda's memory) to hold items pulled out 
of Linda's shared memory. This is done by specifying placeholders in the template 
definition. The symbol used for the placeholder is a "?" preceding the variable 
that will hold the item in question. 

A few simple examples will clarify this discussion. To create items in Linda's 
memory, we would use the commands: 

out ( ' I am a Linda memory i t em ' , 10) 
eval ( ' t h i s i s the output of function g ' , g() ) 
out (10, 2.345) 

To grab the last item in this set, one would use the Linda operation: 

i n (10, ?x) 
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which indicates that the in() operation wants to access a two field item from 
Linda's shared memory with the first field containing an integer of value 10 and 
the second filed containing an item with the same type as x. At the conclusion 
of this operation, the variable χ would contain the value from the second field -
in this case 2.345. If the object being fetched from Linda's shared memory is an 
array, the in() or rd() statement uses a colon and a variable to hold the length 
of the array that was fetched. For example, the statement: 

in("an array", 5, ?y:n) 

will fetch an item from Linda's shared memory with the first field containing the 
string "an array", the second field an integer of value 5, and an array with the 
same type as y in the last field. At the conclusion of this operation, the array y 
will hold a number of elements given by the value of the integer n. 

At this point, we have covered enough Linda to read the pseudo code used in 
this chapter. For a more detailed introduction to Linda, see the book by Carriero 
and Gelernter [7]. 

The Linda version of pWESDYN was structured around two processes: a 
master and a worker. Pseudo code for the master is given in figure 3. The master 
sets up the calculation by spawning a process on the other nodes where the process 
will execute the worker-function. This function takes two arguments to provide a 
worker ID and a value for the total number of workers. 

The master then waits for the workers to finish. This is an example of the use 
of Linda's memory to provide synchronization. The master process blocks until 
an item in Linda's memory exists that contains two fields: the string 'worker 
process' and the return value from the function worker(). The master will 
execute one in() for each evalO'ed process thereby assuring that it waits until 
everyone is done. 

In this version of the code, the master just starts up the job, and waits for 
indication of completion. There is no reason the master couldn't transform into a 

program ρWESDYN 
number_of_workers = READ_NUMBER_GF_WORKERS 
do i=l,number_of.workers ! create workers 

evaK'worker process ' , worker(i,number_of.workers)) 
end do 
do i=1,number_of.workers ! Confirm the completion 

inCworker process ' , ?k) 
end do 

end pWESDYN 

Figure 3: Pseudo-code for pWESDYN master code 
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integer function worker(my_ID,number_of.workers) 
CALL INITIALIZE_DWNER_COMPUTES_FILTER () 
CALL WESDYN() 
return 

end worker 

Figure 4: Pseudo-code for pWESDYN worker code 

worker after the eval-loop. We choose not to do this in order to make performance 
evaluation easier. 

The worker code is presented in Figure 4. This is also a very simple routine. 
The worker sets up the owner computes filter by calling 0WNER^C0MPUTES_SETUP() 
(which will be explained later), and then calls the W E S D Y N subroutine. 

At this point, the two routines have done nothing but setup the parallel pro
gram. The work carried out by the worker is within the routine, WESDYN(). We 
present pseudo-code for the parallel WESDYN() routine in Figure 5. Notice that 
all the parallelism is bracketed by # i f def-statements which lets us maintain the 
parallel code within the same source code as the sequential program. Also notice 
that the difference between the sequential and parallel versions of WESDYN () are 
minimal. 

There is no substantial difference between the sequential and parallel versions 
of WESDYN(). The only exception is within WESDYN() all output is bracketed by 
# i f def PARALLEL statements to select code that directs only one node to create 
and write the output files. 

The parallelism is buried within the non-bonded routines. Hence, the only 
other changes required for the parallel version of the program are in each of the 
three non-bonded energy routines. In this paper, we will only show the changes 
within NBSTST () since the other two are of nearly identical structure. 

In Figure 6 we show pseudo-code for NBSTSTO. Note that NBSTST() was 
changed in only three locations - otherwise the code is identical to the sequential 
version. Basically, the outermost loop over charge groups has been amended at 
the top of the loop with an owner-computers filter. This mechanism is simple to 
implement and lets us conduct future research on load balancing algorithms. 

Since different loops are executed by different nodes, the forces are fragmented 
across the workers. The global sum after the loops, reconstitutes the fragmented 
force vector into a single vector and assures that a copy of this summed vector 
resides on each node. In the call to the global sum: 

CALL GDSUM(F,3*N+6,W0RK) 
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#ifdef PARALLEL 
subroutine WESDYN() 
#else 
program WESDYN 
#endif 

PRQCESS_USER_COMMANDS 
READ_MQLECULAR_T0P0L0GY_FILE 
READ_CARTESIAN_COORDINATES 
READ_INITIAL_VELOCITIES 
MINIMIZE_ENERGY_OF_INITIAL_STRUCTURE 
do i = 1,number.of.steps 

i f (TIME_T0_UPDATE_N0N.B0NDED_NEIGHB0R_LIST) then 
EVALUATE_NQN_BQNDED_NEIGHBOR_LIST 

endif 
CALCULATE_INTERNAL_COORDINATE_ENERGIES_AND_FORCES 
CALCULATE_GEOMETRIC.CENTERS_OF_CHARGE_GROUPS 
CALL_NBSTST ! evaluate solute-solute energies and forces 
CALL_NBSTSV ! evaluate s ο l u t e - s o l v e n t energies and forces 
CALL.NBSVSV ! evaluate solvent-solvent energies and forces 

INTEGRATE_EQUATIONS_OF_MOTION 
i f (SHAKE_REQUESTED) then 

APPLY.SHAKE 
endif 
i f (TEMPERATURE__QFF_LIMITS) then 

RESCALE.VELOCITIES 
endif 

end do 
#ifdef PARALLEL 

return 
#endif 
end WESDYN 

Figure 5: Pseudo-code for WESDYN() subroutine. Except for trivial changes, this 
is identical to the pseudo-code for the sequential W E S D Y N program 
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subroutine NBSTST 
do i = l,number_of_charge_groups 

#ifdef PARALLEL 
i f (mine(i)) then 

#endif 
number_of.interacting.groups = 
CQLLECT_ALL_GROUPS_WITHIN_CUTOFF 
do j = l,number_of.interacting_groups 

SWITCH = 
CALCULATE.SWITCHING.FUNCTION(group(i),group(j)) 

do k = 1,number_of.atoms(group(i)) 
do 1 = 1,number_of.atoms(group(j)) 

E_SQLUTE_SOLUTE = E_S0LUTE_S0LUTE + SWITCH * 
ENERGY(atom(k,group(i)),atom(l,group(j))) 

F.PAIR = FORCE(atom(k,group(i)),atom(l,group(j))) 
F(atom(k,group(i))) = F(atom(k,group(i))) 

+ SWITCH * F.PAIR 
F(atom(l,group(j))) = F(atom(l,group(j))) 

- SWITCH * F.PAIR 
end do 

end do 
end do 

#ifdef PARALLEL 
end i f 

#endif 
end do 

#ifdef PARALLEL 
CALL GDSUM(F,3*N+6,W0RK) ! combine results 

#endif 
end NBSTST 

Figure 6: Pseudo-code for the parallel NBSTST subroutine. 
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subroutine GDSUM(F,N,WORK) 
my_ID = mynodeO 
i f (my_ID .eq. GDSUM_NODE) then ! 

do i=l,number_of_workers-l ! 
in('gdsum data' ,?work:len3) ! 
do j= l ,N ! 

F( j ) = F(j) + work(j) ! 
end do 

end do 
do i=l,number_of_workers-l 

out('gdsum data_answers',X :N) 
end do 

else 

outOgdsum data ' ,X:N) 

in('gdsum data__ans wers ' ,?X:len3) 

endif 

The node designated to 
perform global sum co l l ec t s 
energy-force array from a l l 
other nodes and accumulates 
them. 

!Send out copies of summed up 
! energy-force array to a l l 
! other workers. 

! Other workers i n i t i a l l y send 
!out t h e i r energy-force arrays 
!wait for the sum to come 
!back 

Figure 7: Pseudo-code for a global sum. 

F is an array containing the six energy components plus the 3*N force vector and 
WORK is a temporary work array. The operation of a global sum is to carry out an 
element-wise sum across the elements of a vector and to place an identical copy 
of the result on each node of the parallel computer. In Figure 7 is a routine to 
carry out the global sum operation. The algorithm used here is primitive and 
far better methods are known [8]. We tested this method against more optimal 
methods that use traversal of a balanced binary tree to guide the global sum. We 
found that on small workstation clusters, our primitive method was competitive 
(and in some cases even faster). This of course would not be the case for parallel 
computers with large numbers of nodes. 

NBSVSVO was changed along the same lines as NBSTSTO. NBSVSTO was mod
ified along slightly different lines. In this case, it did not include the call to the 
global sum and the fragmented force vector was passed onto NBSVSVO. This saved 
one global sum operation. 

The last component of the program we need to explain is the owner com
putes filter in figure 8. An array (called loop-ownership is initialized to zero 
and stored as a global variable (i.e. stored within a common block). This is 
a two state filter with zero representing the case where some other node owns 
the iteration and one represents ownership of the iteration. In the subroutine 
INITIALIZE_OWNER^COMPUTES_FILTER(), we show the cyclic decomposition used 
in many M D codes. Finally, the logical function MINE Ο accesses the global array 
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subroutine INITIALIZE_OWNER_COMPUTES_FILTER() 
common/filter/loop.ownership (MAXATOMS) 
do i = l , MAXATOMS 

loop.ownership(i) = 0 
end do 

c 
do i=my_ID+l,MAXATOMS,number.of.workers 

loop.ownership(i) = 1 
end do 

end INITIALIZE.OWNER.COMPUTES.FILTER 

l o g i c a l function MINE ( i ) 
common/filter/ loop.ownership (MAXATOMS) 
i f( loop.ownership(i) .eq. 1) then 

return . true. 
else 

return . fa l se , 
endif 

end MINE 

Figure 8: Pseudo-code for the code to setup the owner compute filter. 

to return the state for the indicated iteration. 

This approach to distributing loop iterations may at first seem unnecessarily 
complex. However, just by changing one of two simple routines, we can experiment 
with different load balancing strategies. This will be the focus of the next phase 
of our research. 

pWESDYN program: the TCGMSG version 

Linda was the first programming environment we used to code pWESDYN. We 
wanted to use an additional programming environment for two reasons. First, 
Linda is a commercial product and is not available on every system we wished to 
utilize. By creating a version of pWESDYN based on a public domain program
ming environment, we could move the programming environment anywhere we 
wished. Second, we wanted to verify that the observed performance was due to 
the algorithm and not the Linda programming environment. 

The additional programming environment we selected was T C G M S G [6]. T C G M S G 
is a coordination library consisting of message passing constructs and global com
munication operations. The global operations proved particularly convenient and 
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program pWESDYN 
c a l l PBEGINF ! i n i t i a l i z e TCGMSG 
c a l l INITIALIZE.OWNER_COMPUTES_FILTER() 
c a l l WESDYN 
c a l l PEND ! shut down TCGMSG 

end pWESDYN 

Figure 9: Pseudo-code for T C G M S G version of pWESDYN. 

saved us having to develop these routines ourselves. 

Generation of the T C G M S G version of the program was almost trivial once the 
Linda version existed. This simple program is shown in Figure 9. The T C G M S G 
runtime environment handles process startup. Therefore, the program is rigor
ously an SPMD (Single Program Multiple Data) program in which each node 
runs the identical program. The only change we had to make was to provide an 
interface between our definition of the global sum and the one that comes with 
T C G M S G . 

Results 

We have studied the performance of pWESDYN on a wide range of MIMD sys
tems. The code was portable from workstation clusters, to shared memory mul
tiprocessors, to distributed memory MIMD supercomputers. Of these systems, 
however, we have only fully analyzed the results from workstation clusters. Hence, 
in this paper we will only discuss the workstation cluster results and save the other 
systems for a future paper. 

The cluster in this study was a network of RS/6000 560 workstations with 
128 Mb of random access memory on each workstation. These were connected by 
an ethernet Local Area Network. This cluster was a shared resource, but it was 
managed so dedicated access could be reserved for benchmarking. 

To benchmark pWESDYN, we worked with a dodecamer sequence of D N A 
known as the B80 canonical structure of the Drew, Dickerson sequence [1], 
d ( C G C G A A T T C G C G ) . We did not use counterions to balance the backbone 
charges of the DNA. Rather, in accordance with Manning's counterion condensa
tion theory [10], the phosphate ions were reduced to -0.25. 

The D N A dodecamer contained 542 atoms. To provide a 12 Angstrum solvent 
shell around the D N A molecule, we added 3580 SPC waters in a hexagonal box. 
The system was equilibrated prior to M D by long Monte Carlo simulation on just 
the water molecules. Finally, the non-bonded interactions were slowly switched 
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Table 1: Wall clock times, Total C P U times, and C P U times within non-bond 
routines for pWESDYN on the RS/6000 cluster. This particular calculation was 
for 50 energy minimization steps. 

numb, of 
nodes 

T C G M S G Linda numb, of 
nodes Wall Cpu(Tot) Cpu(NB) Wall CPU(Tot) CPU(NB) 

1 1349.3 1341.68 1281.28 1348.2 1340.0 1280.0 
2 777.0 740.3 679.3 799.7 736.5 671.7 
3 690.0 543.2 482.0 624.7 532.0 466.4 
4 637.5 446.5 385.4 588.9 444.2 375.2 
5 665.3 380.9 320.1 
6 652.1 339.5 278.5 

A l l times are in seconds. 

from 7.5 to 11.5 angstroms. 

In Table 1 we report on the times for computing 50 energy minimization steps 
for the benchmark system. The energy minimization routines call the same paral
lelized non-bonded energy routines, so this benchmark problem provides a usefully 
sized problem for evaluating pWESDYN. This data shows that the T C G M S G pro
gram runs at the same speed as the Fortran-Linda program for small numbers 
of nodes but by three nodes, it is on the order of 10% slower. We believe this is 
due to the the T C G M S G global communication routines. The T C G M S G routines 
dynamically allocate memory as needed while the Linda routines reduced runtime 
memory overhead by using a static work array. 

The maximum speedup in Table 1 is 2.3 which occurs for Linda at 4 nodes. 
The speedup in terms of the C P U time, however, is 3.0 at 4 nodes and (in the case 
of TCGMSG) continues to improve with more nodes. This discrepancy between 
C P U and Wall times is caused by time spent with additional communication as 
well as managing additional ethernet collisions as more nodes are added. This 
impacts the elapsed wall-clock time but is not accounted to the process C P U 
time. 

At first, a maximum speedup of 2.3 seems quite disappointing. This is on par, 
however, with other molecular dynamics programs running on ethernet clusters. 
For example, in [12] a maximum speedup of 2.5 was reported for their ethernet 
cluster of RS/6000 560 workstations. This is particularly noteworthy in light of 
two facts. First, every facet of the program used in [12] was parallelized - not 
just the non-bonded routines. Second, the system studied in [12] was much larger 
(greater than 14,000 atoms) than our system (3,922 atoms). Given that both 
communication and computation scale as O(N) in a cutoff based M D computation, 
one might predict that system size does not impact efficiency. In the complexity 
analysis, however, the term multipling Ν is much larger for computation than for 
communication so there is far more computation to parallelize for larger systems. 

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

8,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
0

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



148 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Table 2: Wall clock times, Total C P U times, and C P U times within non-bond 
routines for pWESDYN on the RS/6000 cluster. The calculation was for .35ps of 
dynamics, 2 step minimization, and with I/O every .05 ps. 

numb, of 
nodes 

Linda numb, of 
nodes Wall Cpu(Tot) Cpu(NB) 

1 4853 4749 4514 
2 2879 2602 2332 
3 2262 1848 1623 
4 2073 1476 1250 

A l l times are in seconds. 

(For a recent example of this effect, see [14]). Given these two effects that favor 
the work in [12], our speedup of 2.3 is actually quite respectable. 

In Table 2 we show the results for a .35 picosecond (350 steps) M D simulation 
with 2 minimization steps prior to the simulation. This test stresses the program in 
a full production mode with I/O occurring every .05 picoseconds (50 steps). Notice 
that the qualitative trends seen in the minimization benchmark are reproduced for 
this M D benchmark. This is the expected result given the portions of the program 
that was parallelized. We use this result to justify basing our comparisons on the 
simpler, energy minimization calculations. 

Conclusion 

In this project, we investigated some of the software engineering issues behind par
allel molecular dynamics programs. To this end, we parallelized a major molecular 
dynamics program called W E S D Y N [3]. For the parallelization, we set the follow
ing guidelines: 

• Design the parallel algorithm so any changes to the sequential code will be 
simple and well isolated. 

• Implement the changes so the parallel and sequential programs can be main
tained within within the same source code. 

• Support portable execution of the parallel code among different MIMD par
allel systems. 

Performance of the parallel program was important, but of a secondary concern 
relative to the issues of quality software engineering. In addition, the primary 
target was modest numbers of clustered workstations, though we wanted to write 
portable code that could easily move to moderate sized MIMD parallel computers 
as well. 
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On the first two points, we clearly succeeded. The parallel algorithm described 
in this paper was simple to implement and required so few changes that a single 
source with i f def s was able to contain both the sequential and parallel programs. 

The third point - portability to other MIMD computers - will be the focus of 
the next phase of this work. While the results are too preliminary to analyze in 
any detail, we can briefly relay some preliminary results. The code was portable 
in that correct answers were produced on a range of MIMD systems. However, by 
having each node separately open and read data files, the code did not perform 
well on distributed memory systems. To deal with this effect, we need to add 
parallel I /O to our methodology. The common approach is to have an #ifdef in 
the code so for parallel systems, only one node accesses the file and then broadcasts 
the results to the other nodes. The problem is that within fortran, there is no 
easy way to do this without carefully breaking down the messages based on the 
size and type of the data. This requires an intimate level of knowledge with the 
code and is therefore undesirable with dusty deck codes. We hope to find a way 
to semi-automatically apply this transformation. 
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Chapter 11 

Advanced Algorithms for Molecular Dynamics 
Simulation 

The Program PMD 

Andreas Windemuth 

Department of Biochemistry and Molecular Biophysics 
and Center for Biomolecular Simulation, Columbia University, 

630 West 168th Street, New York, NY 10032 

A collection of algorithms is presented to allow for the efficient com
putation of the dynamics of large systems of macromolecules and 
solvent. Application of the Fast Multipole Algorithm coupled with 
the Distance Class Algorithm, a multiple timestep method, permits 
the evaluation of unlimited long-range interaction at a cost lower 
than that of conventional cutoff calculations. A new method for 
the calculation of analytical surface areas and derivatives, the Circle 
Intersection Method (CIM), is also described. The CIM is at least 
2-3 times faster than existing exact analytic methods. All methods 
described in this paper are designed to be scalably parallel, mean
ing that resource requirements grow at most linearly with the size 
of the system and are inversely proportional to the number of pro
cessing nodes for sufficiently large systems. The experimental pro
gram PMD, designed to implement these methods, is described and 
plans for its future development with emphasis on advanced solvent 
modeling is outlined. PMD is made freely available at this point 
to provide a flexible testing ground for advanced algorithms to all 
interested researchers. 

Molecular dynamics simulation has become an important tool in computational 
chemistry, particularly for the modelling of biological macromolecules (1-4). The 
method requires the evaluation of forces acting on each atom in the simulated sys
tem, which often contains a large number of solvent molecules as well as complex 
heterogeneous macromolecules such as proteins. The rapid increase in computa
tional capacities has made it possible in recent years to perform simulations of 
large solvated systems with tens of thousands of atoms, and even much bigger 
systems are becoming feasible. 

0097-6156/95/0592-0151$12.00/0 
© 1995 American Chemical Society 
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152 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

A sizable choice of programs are available to do molecular dynamics simula
tions, most of which reach back more than a decade and were originally designed 
to accomodate a few hundred or a thousand atoms (5-7). The traditional way to 
deal with the long range Coulomb interactions is to neglect them beyond a certain 
distance, thereby causing significant errors (8). The programs were optimized to 
run fast on the vector supercomputers that were state of the art at the time, and 
it is not clear how well they can be adapted to the upcoming generation of parallel 
computers, most of which are based on superscalar microprocessors connected by 
a message passing communications network. 

The present paper will attempt to address these problems by presenting a 
collection of advanced algorithms embodied in the intrinsically parallel and dis
tributed program P M D . The goal of P M D is to provide infinitely scalable parallel 
molecular dynamics computation, in the sense that any size of simulation can be 
performed in a given time if enough processing nodes are available. The basic 
requirement for infinite scaling is that computation time, memory usage and com
munication bandwidth all increase at most linearly with the number of atoms and 
decrease inversely proportional to the number of available processing nodes. This 
requires distributed storage of atom parameters and coordinates, and the decom
position of the system must be according to spatial regions, in order to eliminate 
non-local communication. 

Another design principle of P M D is that long range Coulomb forces are not to 
be neglected. This is achieved by the adoption of the parallel fast multipole algo
rithm (PFMA) (9), which performs an arbitrarily accurate calculation of the full 
Coulomb interactions in a time of order Ο (TV), with Ν being the number of atoms 
in the simulated system. To make the computation time for the full interactions 
comparable to those of cut-off calculations, the Distance Class Algorithm, a sim
plified version of the Generalized Verlet algorithm (10), is provided in P M D . This 
method, similar to an earlier method by Teleman and Jônsson (11), separates the 
slowly changing long range Coulomb interactions from the short range interactions 
and keeps their forces constant, to be recalculated at regular intervals during the 
simulation. 

With regards to future development, P M D is intended to be the test bed for 
other advanced algorithms, particularly implicit solvent models and continuum 
elctrostatics methods, as well as accelerated and directed simulation techniques to 
be used in the study of ligand binding and protein folding. Many implicit solvent 
models, including the continuum electrostatics methods, require a definition of the 
solvent accessible or molecular surface. Moreover, if these models are to be used 
with dynamics simulation or minimization, the derivatives of the surface area with 
respect to the atom coordinates have to be available. To provide the basis for future 
solvent modelling, P M D currently incorporates a novel, very efficient algorithm, 
the Circle Intersection Method (CIM), to analytically calculate accessible surface 
areas of macromolecules and their derivatives. 

Data Distribution 

The question of how to distribute the atom coordinates and force field parame
ters across processing nodes is crucial for the design of a parallel algorithm. The 
simplest way to parallelize M D simulations is to distribute all parameters and co-

D
ow

nl
oa

de
d 

by
 C

O
L

U
M

B
IA

 U
N

IV
 o

n 
Ju

ne
 2

9,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
1

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 153 

ordinates to all processing nodes, calculate a different subset of the force field on 
each node, and globally combine and add the resulting partial forces. The ad
vantage of this full distribution method is that it requires a minimum amount of 
changes in existing code, and load balancing is relatively easy to implement. Also, 
no special considerations have to be given to non-local interactions, such as the 
long range Coulomb interactions. The scaling of the method is Ο (N/P) for time, 
O(N) for storage per node and O(N) for communication bandwidth per node. 
The full distribution method is useful for small and medium sized systems, and on 
machines with a small number of nodes, each containing sufficient memory to hold 
the full system. A fast communication network is necessary, due to the need for 
global communication. Obviously this method will quickly reach its limits when 
large systems and massively parallel machines are involved. 

A better way of data distribution is the force decomposition method (12,13). 
The atoms are divided into y/F classes, and each node stores the coordinates 
and parameters of the atoms in two such classes, pairing different classes on each 
node. This method is more scalable than the full distribution method, but it is 
also more difficult to implement. The scaling is 0(N/P) for time, 0(N/P) for 
storage per node and 0(N/yfF) for communication bandwidth per node. Thus, 
communication is not scalable, albeit much more so than with the full distribution 
method. 

In order to obtain a fully scalable algorithm, a spatial decomposition method 
has to be used, which takes advantage of the spatial locality of the short range 
interactions. The simulation volume is divided into Ρ separate regions, and each 
processing node is assigned all atoms in one of these regions. Communication of 
coordinates and forces takes place only between nodes whose regions are within 
the maximum interaction distance of each other. The scaling of this method is 
Ο (N/P) for time, Ο (N/P) for storage per node, and Ο((N/P) 3) for communica
tion bandwidth per node. Special consideration has to be given to the long range 
interactions in the spatial decomposition method, since only interactions within 
a certain distance are covered by the communication scheme. By adding an ad
ditional communication step to the P F M A , in which the values of multipoles are 
exchanged, the communication band with per node of the long range interactions 
can be made nearly scalable, meaning that its complexity will be 0((N\nN)/P). 

In P M D , a flexible spatial decomposition method, called Voronoi Decompo-
sitionÇVO), is used to provide load balancing and allow for arbitrarily shaped 
molecules. Each processing node is assigned a position in the simulation region, 
and atoms are assigned to whichever node they are closest to. This leads to a de
composition of space into Voronoi polyhedra whose boundaries are defined by the 
othogonal midplanes along the distance between each pair of nodes, as illustrated 
in figure 1. 

There are several advantages to using Voronoi decomposition as opposed to 
a more conventional cubic grid decomposition. The most important advantage is 
that by shifting the positions assigned to the nodes, the size of the regions can 
be varied to provide both static and dynamic load balancing. Load balancing is 
needed when the atom density is non-uniform throughout the simulation region, as 
well as when the processing nodes run at different speeds or are differently loaded, 
a common situation in workstation clusters. 

To determine the directions in which the node positions need to be shifted, 
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154 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 1 : Spatial decomposition using Voronoi polyedra. The dark gray region contains 
the atoms assigned to a particular node, the light gray region contains interacting atoms 
for which coordinates and forces have to be communicated to and from neighboring 
nodes. Only two dimensions are shown, actual decomposition is in three dimensions. 

each node distributes the actual time U spent on its part of the potential evaluation 
to all neighbors. Each node then determines the average t a v g of the load among 
itself and its neighbors. The node positions p t are then periodically updated 
according to 

where the sum is performed over all interacting neighbors of node i. The first 
term in the sum pulls overloaded nodes towards other nodes, thereby reducing the 
volume of their Voronoi polyhedron. The second term keeps node centers at a 
distance from each other to avoid singularities. The particular form of these terms 
is highly empirical and has not been fully explored. The factor ω is adjusted to 
provide optimum convergence of the procedure. 

For the calculation of all short range interactions, each node stores the coor
dinates and parameters of the atoms within its domain, called local atoms, as well 
as copies of coordinates and parameters from atoms in neighboring domains, called 
ghost atoms. Only ghost atoms that are within the maximum interaction distance 
dc from the boundary of the Voronoi polyhedron are actually stored, which, in the 
limit of large domains, makes the cross-boundary communication a surface effect 
and leads to the 0((N/P)*) scaling of communications. 

In order to avoid complicating the development of force fields and simulation 
methods, the actual form of decomposition is hidden behind a Data Distribution 
Interface (DDI), keeping the overhead associated with developing parallel code to 
a minimum and permitting transparent change of the underlying decomposition 
algorithm without affecting the Algorithms built on it. For example, dynamic 
load balancing is completely transparent and can be achieved simply by calling a 
balancing routine at appropriate times during the simulation. 

Molecular Structure and Potential Function 

P M D was built to implement the widely used C H A R M M force field, the form of 

(1) 
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11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 155 

which will be summarized in this section. Molecular Dynamics simulation is based 
on the numeric integration of Newton's equations of motion: 

m t x , = V i i / ( x ! , . . . , x j v ) . (2) 

The vectors X ; denote the positions of all atoms, with i ranging between 1 and 
the total number of atoms N. The mt- are the atomic masses and t / (x i , . . . ,ΧΛΓ) 
is the full potential function representing all interactions between the atoms. The 
potential is composed of bond and nonbond interactions: 

U = Ur + U9 + Vφ + υ ω + tfvdW + ί/coulomb. (3) 

The bond interactions Ur, Ue, i / ^ , and Uu represent the forces between atoms 
generated by their chemical bonding, and are approximated by the following ex
pressions: 

Ur = E ^ „ ( r , n i „ - r 0 , n ) 2 (4) 
n=l 

Ue = E ^ n ( ^ n i n f c n - ^ n ) 2 (5) 
71 = 1 

υΦ = Σ k<t>* [1 ~ COSn n (0 i n i w f c n / n - 0o,n)] (6) 
n=l 

Νω 

1/ω = Σ kvAUinjnkJn ~ ω0,η)2 (7) 
n=l 

Ur is composed of an harmonic stretching force between two atoms in and jn for 
each one of Nr bonds. The quantities kr>n and ro,n are parameters to the force field 
and depend on the properties of the atoms i n and jn as expressed by their atom 
types. The other terms are similarly defined to describe harmonic bending of the 
angle between two atoms, a periodic potential for torsions involving four atoms 
and an harmonic improper torsion potential to provide planarity constraints in 
ring structures as well as tetrahedral centers. The potential depends on the atom 
coordinates through the bond lengths = |x, — χ^·|, the bond angles 0 ^ , and the 
proper and improper torsion angles φ^ι and ω^ι (6). 

At the center of the force field parametrization are the atom types. Atoms 
are assigned one of several types according to their elemental nature, hybridiza
tion state and other relevant chemical properties. Bonds, angles, dihedrals and 
improper torsions are then assigned to pairs, triples and quadruples of atoms ac
cording to the chemical structure of the molecule. The parameters (fcr> 

&0,7η0ο,η5 Jty.n» nn, Φο,η, ^ω,η,^ο,η) are tabulated for each possible combination of 
atom types. They are usually obtained from fitting to experimental results or from 
quantum chemical calculations. 

In order to simplify the assignment of atom types and bond topology, the 
assignment is done for small groups of atoms called residues, which can be anything 
from a water molecule to a chromophore. The most common residues are the 
amino acids that proteins are composed of. Larger structures such as proteins are 
assembled from the residues by means of patches, i.e. rules for connecting together 
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residues. Patches specify the modifications and additions that have to be applied 
to the participating residues in order to describe the mechanics of the combined 
system correctly. One example for a patch in proteins is one describing peptide 
bonds, another is one for disulfide bonds. 

For proteins, all that is needed to assign the bond energy parameters is the 
sequence of residues and a specification which cysteine residues should be involved 
in a disulfide bond. P M D then automatically applies the appropriate peptide and 
disulfide patches to generate the complete molecular structure. Solvent molecules 
can be specified as residues with a replication number specifying the number of 
solvent molecules that are present. C H A R M M format residue topology files and 
parameter files are read by P M D to define the residues and assign the parameter 
values. 

The remaining terms in equation 3 describe the nonbond potential. They are 
composed of van der Waals interactions described by the Lennard-Jones potential 

and Coulomb interactions 
^Coulomb = Σ W 

and depend on the atom coordinates solely through the interatomic distances ry = 
|xt- — X j | . The parameters Ay and By are tabulated for all combinations of atom 
types. They are usually derived from per-atom parameters et and σ,· in the following 
way: 

^ = 4(2t±a) l f^, % = 4 (^)W (10) 
but there may be exceptions where Ay and By may be specifically assigned for 
certain pairs of atom types. 

The partial charges gt- are specified independently of atom type in the residue 
topology file and are chosen to approximate the actual charge density of the 
residues as derived from quantum chemical calculations. The dielectric constant 
is normally e = 1, but may be set to something larger to account for electronic 
polarization effects. 

The bond potential does not require much time to calculate, since the number 
of bonds, angles and dihedrals is on the order of the number of atoms. The 
nonbond potential, however, is defined as a sum over all pairs of atoms, i.e. a 
sum with N(N — l ) /2 terms. For large systems, full calculation of this sum is 
prohibitive. The Lennard-Jones potential (equation 8) used to describe the van 
der Waals interactions is short range, i.e. its strength diminishes quickly outside a 
certain range. Thus, it can be calculated in good approximation as a sum over all 
pairs within a maximum distance d c , the cutoff distance. 

The Coulomb potential (equation 9), however, is long range, i.e. it does not 
decrease with distance enough to make up for the increasing number of atoms at 
that distance. It has traditionally also been calculated using a cutoff, but this has 
been known to be a bad approximation for macromolecular systems (8). There 
are often extended charge imbalances in proteins such as helix dipoles, charged 
side chains, and dipolar membranes, the electrostatic properties of which may 
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11. WINDEMUTH Advanced Algorithms for Molecular Dynamics Simulation 157 

contribute considerably to the structure and function of the system. It is precisely 
to address this problem of the long range nature of the Coulomb interactions, 
that the Fast Multipole Algorithm is used in P M D , which will be the focus of the 
following section. 

The Fast Multipole Algorithm 

In order to efficiently compute the full Coulombic interactions in large molecular 
systems, the Fast Multipole Algorithm as proposed by Greengard and Rokhlin 
(14,15) and later implemented by Leathrum and Board (9,16) is used in P M D . 
The algorithm allows the calculation of the full Coulomb interaction to a given 
numerical precision in a time proportional to the number of atoms. It thus satis
fies the requirement of scalability. The implementation by Leathrum and Board, 
called the Parallel Fast Multiple Algorithm(PFMA) is very efficient, due mostly to 
the precomputation of coefficients and the use of spherical harmonics, and it was 
designed to run on parallel machines, making it very suitable for use in P M D . 

A similar algorithm, the Cell Multipole Method, was developed independently 
by Ding and Goddard (17). Speedups similar to the F M A have been observed with 
the C M M , and tested for systems with up to a million atoms. The C M M is based on 
the physically more intuitive cartesian representation of multipoles, while the F M A 
is based on the mathematically more appropriate spherical harmonics, functions. 
Since cartesian multipoles of higher order are more cumbersome to implement than 
the corresponding spherical harmonics, the accuracy of the C M M as reported by 
Goddard is restricted to the octupole level, corresponding to ρ = 3 in the F M A 
terminology below, while the accuracy of the F M A is limited only by memory 
and C P U time requirements. No parallel implementation of the C M M has been 
reported. 

Some novel improvements were made to the P F M A code upon integration into 
P M D , including a pruning of chargeless volumes to avoid unnecessary computation 
and storage, and a task distribution based scheme for load balancing. 

The Fast Multipole Algorithm is based on the expansion of the Coulomb 
potential of a bounded charge distribution in multipoles 

* w = 4 * £ t f $ # . ( « ) 

where (r, 0, φ) are the spherical coordinates associated with the cartesian coordi
nate vector x, and Y/ m (0, φ) are the complex valued spherical harmonics functions. 
This expansion is exact and valid everywhere outside the smallest sphere enclosing 
all charges. For a collection of η point charges at positions χ,·, the coefficients 
Mim are given by 

Mlm = YiqiYl*m(ei,<pi)ri', (12) 
1=1 

where Yj*m denotes the complex conjugates of the spherical harmonics functions. 
In addition to the multipole expansion in equation 11, the F M A also uses the local 
expansion 

*(χ )=4π Σ «Λ (13) 
l,m 
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which is equivalent to a Taylor expansion and valid within the largest sphere around 
the origin that does not contain any of the charges contributing to it. 

The expansions in equations 11 and 13 are exact, i.e. within their regions of 
validity they provide the exact value of the potential. However, they also consist of 
an infinite number of terms. The approximation in the F M A consists of truncating 
the expansions after a certain number of terms with the truncation limit ρ being 
the largest value of / included in the sums. It has been shown that the same level 
of truncation is appropriate for both the multipole and the local expansions. The 
essential idea of the F M A is to build a hierarchy of multipoles, each containing the 
contribution of a subset of charges of limited extent. For efficiency, cubic boxes 
are used in the F M A . The smallest boxes on the lowest level contain only a small 
number of charges (10-20), the boxes on successively higher levels are the union 
of eight lower level boxes, until one single box on the highest level contains all 
other boxes, and therefore all charges. The number of levels L is chosen to provide 
the optimal tradeoff between multipole and direct interactions and depends on the 
number of charges in the system as Ν ~ SL. 

The multipoles associated with the lowest level boxes are calculated according 
to equation 12. Multipoles of higher level boxes are calculated not from the charges, 
but from the multipoles of the lower levels. To obtain the multipole expansion 
for one box, the eight multipole expansions of its subboxes are translated to a 
common origin and added up. Translating the origin of a multipole expansion by 
a translation vector xt involves finding the coefficients of Φ ;(χ) such that 

Φ'(χ) = Φ ( χ + χ , ) . (14) 

The relationship between the old and new coefficients is linear, i.e. 

ML = Σ Tli^M'm., (15) 
/',m' 

and the translation matrix is given by 

rpMM _ A„ (2/ + 1) ai<m>ai-l>,m-m' ( ^ W-l v * ( û , χ /1 βχ 
T ' ^ - ^ { 2 l l + 1 ) { 2 l _ 2 l l + 1 ) a J - n ) Yt-,.m-m-VM (16) 

with the auxiliary numbers a/ m defined as 

« / m = ( - l ) / + m J A n ^t,), rr (17) 
y 4π(/ + my. (I — m)\ 

Since the coefficients T{^fm, depend solely on the translation vector x t , and since 
in the regular cubic arrangement of multipoles the same translation vectors occur 
many times, the coefficients can be precomputed for the L levels and 8 possible 
directions and then reused very efficiently during the calculations. 

After the multipoles Φ(χ) of all boxes have been calculated, a local expansion 
Φ(χ) is constructed for each box, describing the potential inside the box caused by 
all distant charges, i.e. all charges except those in the same or neighboring boxes. 
An essential element of the algorithm is the recursive use of the local expansion 
from the next higher level, i.e. 

Φ / (χ) = Φ ,

/(χ) + Φ/_ι(χ), (18) 
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where Φ{(χ) is the local expansion of all multipoles not already contained in 
Φ/_ι(χ). The number of those multipoles is never larger than 6 3 — 3 3 = 189, 
thus the number of operations for this step is independent of the size of the system 
for each box. Since the number of boxes depends linearly on the number of charges, 
this step, like all others, is scalable. The coefficients of the local expansion of a 
given multipole expansion are given by 

4 = E C M w (19) 
/',m' 

with the transformation matrix 

α\ι >α\ ( — l ) ' + m ' 
T ' ^ W = 4 π ( 2 Ζ ' + 1 ) ( 2 Γ + α ? α 1 + ί , , _ „ , r f + ' + 1 Y ^ — ' ^ ^ ^ 

and they can be precomputed in the same way as T ^ J i m J . Most of the time spent 
evaluating the multipole interactions is in this transformation. The translation of 
Φ/_ι(χ) to the origin of Φ/(χ) is done similar to the translation of multipoles, i.e. 

L'lm - Σ Ttm,l'm'Ll'm'- (21) 
Ι',τη' 

with the transformation matrix 

° - " ( 2 l + 1 ™ T l ) a , . , . ( - r / ' ' ( 2 2 ) 

The local expansions $/(x) are calculated in a hierarchical, sequential manner such 
that only one set of expansion coefficients need to be stored per level at any one 
time, thereby greatly reducing the storage requirement for the F M A . Once the 
local expansions at the lowest level are known, the interaction energy of a 
particle X ; with all other atoms not within neighboring boxes is given as 

ί/ψ(χ,·) = | φ ^ ( χ , · ) , (23) 

where Φ^,· is the local expansion in the box of particle i. The total Coulomb 
potential is then 

t / C o u i o m b = f : ^ ^ , i ( x i ) + E — · ( 2 4 ) 
»=i € (ij) € T i i 

The pair sum (ij) in the second term is restricted to pairs within one box or 
between neighboring boxes. 

The parallel implementation of the F M A is currently quite straightforward 
and not entirely scalable in storage and computation. The atom coordinates are 
distributed globally during the long range step, and the F M A is divided into a 
number of tasks, which are assigned to processing nodes according to balancing 
requirements. The tasks are created by restricting the F M A to subvolumes of 
the total grid and calculating the local expansions only in that subvolume. A l l 
multipoles are calculated on each node. This simple technique eliminates the need 
for communication of multipoles, but it is limited to about 1 million atoms and 
a few hundred processors. A fully scalable parallel version of the F M A is under 
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development and will relieve these limitations by making use of data distribution 
and a hierarchical multipole communication scheme. 

The Distance Class Algorithm 

The Fast Multipole Algorithm makes the calculation of the full Coulomb interac
tions linear in complexity, but it still takes considerably more time to execute than 
a cutoff based calculation. The Distance Class Algorithm (DCA) has been devel
oped for P M D to reduce the computation time per timestep further such that it is 
comparable in cost with the much less accurate cutoff methods. To keep track of 
the short range interactions, a pairlist is maintained and updated regularly using a 
very efficient scalable, grid based algorithm. The D C A differs from other multiple 
timestep methods (10,11,18,19) mainly in that it is simpler. Application of more 
advanced methods could provide better accuracy and is being considered for future 
versions of P M D . 

In molecular dynamics simulations, fast motions are generally vibrations or 
rotations of atoms that don't take the atoms further than about 1Â from their 
average position. This is a property of the force field that is due to the restrictive 
nature of bonded interactions and van der Waals interactions which prohibits the 
atoms from moving freely. The average positions around which atoms vibrate 
change much more slowly. Because of this separation of time scales, the Coulomb 
interaction between distant atoms changes very little during a short period of time. 
It is thus a good approximation to separate interactions into distance classes and 
to keep the potential and forces resulting from all but the first class constant for 
several timesteps. 

The Coulomb interactions are divided into Nc different terms 

t/Coulomb = Σ Σ — (25) 

*=i {iJh € V i j 

by decomposing the set of all pairs {i, j} into Nc disjoint sets {i,j}k called distance 
classes. The decomposition is performed by first specifying a number of distance 
values d\, d<i,... d^c such that 

di < d2 < ... < dNc = oo (26) 

and then classifying all pairs of atoms into classes according to their distance rtJ-
in space 

{iJh = {(», j ) : dk < r{j < dM}. (27) 

The Distance Class Algorithm in P M D uses two classes, one for short range in
teractions and one for long range interactions. The short range interactions are 
calculated from the same list of atom pairs that is used to calculate the van der 
Waals interactions, which are truncated at the cutoff distance dc. The long range 
interactions are calculated by subtracting the short range potential and forces from 
the full potential and forces calculated using the Fast Multipole Algorithm. They 
are then stored and applied as a constant force until either an atom is detected 
to move more than a given tolerance dto\, or until a certain number of steps N\nt 

is counted since the last update. The interval of constant force JVi n t need not be 
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longer than about 20, at which point the F M A becomes comparable in C P U time 
usage to the short range interactions. The tolerance dto\ ensures that there is an 
upper bound on the error incurred by the D C A . 

This combination of F M A and D C A makes it possible to calculate the full 
Coulomb interactions of large systems in a time comparable with conventional 
cutoff calculations. Indeed, since the long range interactions are not neglected, 
the class separation distance can be chosen shorter than the typically used cutoff 
distance, making the F M A / D C A method both more accurate and faster than cutoff 
calculations. Fig. 2 illustrates the performance gain compared to a direct pairwise 
full Coulomb calculation. 

102 103 104 

Number of atoms 

Figure 2: Performance of the FMA and the combined F M A / D C A methods compared to 
a full pairwise Coulomb calculation, plotted logarithmically against system size. Curves 
for dc = 7Â and dc = 9Â are shown. With 24,000 atoms, almost a factor of 100 is gained 
by using FMA and DCA. 

The tolerance is chosen to be d t o i =1Â, which provides on the order of 20 
steps in which the pairlist does not need to be rebuilt. In accordance to that, 
and because larger intervals do not gain a significant performance increase, the 
maximum pairlist rebuild interval is set to N\nt = 20. This provides an accuracy 
better than 1% for the electrostatic forces compared with full calculation at each 
step. This accuracy corresponds well with the accuracy of the F M A truncated at 
ρ = 4 terms, which is about 0.5%. 

The evaluation of short range interaction, i.e. all interactions between atoms 
no more than the cutoff distance dc apart, is done most efficiently using a pairlist. 
For each atom a list is constructed that contains the numbers of all atoms within the 
cutoff distance. In order for the procedure to be scalable, a grid algorithm is used to 
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preselect candidates for the pairlist, cutting the time for constructing the pairlist to 
O(N). Since each node needs only the pairlist for local atoms, the parallel scaling 
of pairlist generation is Ο (N/P), satisfying the scalability requirement. When the 
pairlist is updated, the distance classes change and the long range interactions 
have to be recalculated. It is therefore natural and necessary to couple pairlist 
generation and long range force evaluation to always occur together. 

For efficient pairlist generation, a cubic grid is constructed, with a grid con
stant equal to the cutoff distance. Each atom is assigned to the closest grid point, 
producing a list of atoms at every grid point. Next, a loop through neighboring 
pairs of grid points is executed and for each pair of grid points all possible atom 
pairings are examined. Those atom pairs that are within the cutoff distance are 
entered into the pairlist. Only half of the neighbors of a grid point need to be 
considered, since each pair of atoms would otherwise be listed twice. 

In the parallel case, communication time can be reduced by adding an addi
tional criterion to the pair selection. Each pair of neighboring processing nodes 
has a directed link assigned to it. This link points to the node which will calculate 
all non-bond interactions across the interface between the node regions. Since a 
node needs to know only the coordinates of those ghost atoms with which it is 
to calculate the interactions, communication can be cut in half by not updating 
unused ghost atom coordinates. Thus, the rules for including pairs in the pairlist 
are as follows: For local pairs, an atom is paired with another only if its grid 
point number is higher. For non-local pairs, an atom is paired with another only 
if its node is responsible for calculating the interaction^ The first criterion allows 
the loop over grid points to be cut in half, the second reduces the ghost atom 
communication. 

While the additional criteria complicate the code, they have no effect on the 
efficiency of the algorithm when only one node is used, and they greatly reduce 
communication when the code is run in parallel. 

Solvent accessible area and the Circle Intersection Method 

Simulation of macromolecules in vacuum is rarely an appropriate model for the 
real system. Solvent effects are crucial for determining protein structure and for 
almost all biological processes (20-24). Solvent effect can be roughly divided into 
two areas: Hydrophobic effect and electrostatic properties. The hydrophobic effect 
is due to the self interaction of water, and occurs when water would rather be next 
to itself than next to a solute molecule. The electrostatic effect derives from the 
high dielectric constant of water, which attenuates and attracts electric fields, 
leading to suppressed Coulomb interactions and dielectric pressure forces. There 
is also an electrostatic effect from ions in the solution, which further attenuates 
electric fields. 

The easiest way to model solvent is explicit solvent simulation. A large num
ber of water molecules are included in the system, and given an appropriate water 
model, all properties of the solvent-solute interactions should emerge from the 
microscopic model. While this is feasible, it is also very expensive in terms of com
puter time. P M D is well suited for explicit solvent calculations, since its scalability 
provides for the large and very large systems that generally result from building 
explicit solvent models. However, it is often desirable to use more sophisticated 
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models, and the future development of P M D is directed towards providing both 
implicit solvent models as well as continuum electrostatics methods for solvent 
modeling. 

Implicit solvent models attempt to reproduce solvent effects by defining a 
potential, often with a number of parameters fitted to observations, that can be 
easily calculated from atom positions in the same manner as the other non-bonded 
interactions. Several such models have been proposed, some based on solvent 
accessible surface areas (25-29), others based on atom coordinates only (30-32). 

Continuum electrostatics is a more rigorous aproach to calculating the electro
static part of the solvent effects (24). It is based on solving the Poisson Boltzman 
equation with the solute represented as a low-dielectric cavity in a high dielectric 
medium, with the molecular surface separating the two regions. Most commonly a 
finite difference method is used to solve the Poisson Boltzman equation (20,33-35), 
but the boundary element method is also used (36-40). 

A l l continuum electrostatics methods as well as most implicit solvent methods 
depend on a representation of the solvent accessible or molecular surface, which 
separates the interior solute volume from the exterior solvent space. Thus the 
first step towards solvent modelling should be a fast and scalable method for the 
computation of molecular surface areas and their derivatives. P M D currently im
plements the Circle Intersection Method (CIM), a fast method for the calculation 
of the solvent accessible surface of the solute, including the derivatives to obtain 
forces. The CIM essentially follows Conolly (41) with regards to the geometry of 
the surface, but uses a novel method for finding vertices. The computation time 
required is 2-3 milliseconds per atom on a SGI Indigo 2/R4400 and scales linearly 
with the number of atoms for arbitrarily large molecules. 

The CIM is estimated to be about thirty times faster than the original method 
A N A , and approaches the MSEED method in speed (42). Unlike MSEED, how
ever, P M D measures the complete surface including cavities with correct treat
ment of complete circles of intersection, which have been found to occur quite fre
quently in larger proteins. Table 1 shows a comparison of P M D with M S E E D and 
A N A R E A , a method developed by Richmond (43) and modified by Wesson (27). 
A N A R E A was the fastest exact analytic program available for this comparison. 
The Brookhaven Protein databank files for crambin (lcrn, 327 atoms), pancreatic 
trypsin inhibitor (lpti) with added hydrogens (568 atoms), T4 phage lysozyme 
(21zm, 1427 atoms), M H C class I receptor (lvaa, 3235 atoms), a poliovirus shell 
protomer (2plv, 7162 atoms), and the photosynthetic reaction center (lprc, 10288 
atoms) were used. In those cases where full circle intersections don't exist (lcrn, 
lp t i , and 21zm), the P M D result for the outer surface area agrees almost per
fectly with MSEED. Where full circles exist, MSEED erroneously reports larger 
surface areas. P M D and A N A R E A both measure the surface including cavities, 
and agree well for all test cases. The agreement is not as good as the one between 
P M D and MSEED, indicating that A N A R E A is somewhat less accurate than P M D 
and M S E E D . The CIM and MSEED are both scalable, i.e. scale as 0(N), while 
A N A R E A scales as 0(N2) and will slow down more and more as molecules get 
larger. 

Ultimately, P M D is planned to provide solvation modelling with the Finite 
Difference Poisson Boltzmann (FDPB) method for the electrostatics and the CIM 
surface for the hydrophobic effect. Several methods have been suggested for de-
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Table 1: Solvent accessible areas of proteins calculated with three different pro
grams. Areas were calculated with P M D , with A N A R E A , with M S E E D , and with 
P M D omitting the cavities (pmd-cav). The A N A R E A code used was not dimen
sioned large enough for the photosynthetic reaction center (10288 atoms). 

Accessible surface area CPU time (ms/atom) 
Atoms pmd anarea mseed pmd-cav pmd anarea mseed 

327 2976.4604 2976.4604 2974.2777 2974.2777 2.23 5.05 1.65 
568 4031.4016 4031.4011 4021.3169 4021.3169 2.22 5.66 1.42 

1427 9123.6446 9123.6455 9098.2890 9098.2891 2.40 6.22 1.79 
3235 17975.5711 17975.5840 17903.8977 17901.2460 2.58 6.73 2.04 
7162 35036.5994 35036.7813 34854.0903 34808.7272 2.77 7.64 1.77 

10288 43824.2222 n/a 43313.6653 43294.5298 3.07 n/a 1.97 

riving forces from continuum electrostatics methods (44-46), demonstrating the 
feasibility of that approach. 

Implementation and Performance 

P M D was designed to be modular and very portable. The structure of the program 
is object oriented, although the programming language used is ANSI C, in the in
terest of portability. Fig. 3 shows an overview of the basic parts of P M D . Currently, 
P M D is most useful as a library of subroutines, a high level user interface is not 
yet included. 

A l l aspects of data distribution and parallelism are contained in the Data Dis
tribution and Parallel Adaptor modules. The parallel adaptors, particularly, define 
a small, simple set of routines that are used exclusively to access the message pass
ing features of the underlying parallel architecture. This makes P M D extremely 
portable from one parallel machine to another. Reimplementation of the parallel 
adaptor can be done in a few hours. 

The modular design of P M D provides a general framework to which new 
functionality can be easily added without need to change most of the program. 
Individual modules can be replaced by completely different implementations with
out altering the function of the rest of the system. For instance, in the course of 
development the Data Distribution module was completely redesigned to introduce 
load balancing, switching from a cubic grid distribution to the current distribution 
based on Voronoi polyhedra. None of the modules built on the Data Distribution 
module needed to be changed significantly and they continued working with the 
new distribution. 

Central to this modularity is the definition of an abstract interface defining 
how application modules are to access the underlying P M D data structures, with
out having to be aware of the form of data distribution, or the fact that data is 
distributed at all. This interface has evolved during the development of P M D , and 
documentation will be forthcoming when the specifications have sufficiently solid
ified. This will allow developers to use P M D as a library from which to develop 
their own molecular modelling applications without having to know the P M D code 
in detail, and to take advantage of the infrastructure for parallelism and molecular 
structure description of P M D without undue extra effort. 

P M D is continually under development, and source code versions are made 
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available periodically to encourage researchers to use P M D for their own purposes. 
The only conditions attached to the distribution are 1) that no part of it be used 
in commercial applications without prior consent of the author, 2) that any addi
tions or modifications be made freely available on the same basis as the original 
code. The current version of the P M D distribution can be obtained by anonymous 
ftp from the machine cumbnd.bioc.columbia.edu. An electronic mailing list for an
nouncements of interest to users of P M D is maintained at Columbia University. 
To subscribe, send electronic mail to pmd-request@cumbnd.bioc.columbia.edu, or 
contact the author of this paper. 

UNIX-commands, command files, graphical interface 

i i i i i i i i i i P o 

i | | l : l l : i i l ;Mp^ 
coordinates, residue topology, parameters 

; : Basic Routines 
.grids, hash tables*streams, etc. serial, CM-5, TCGMSG, PVM, 

Figure 3: Diagram of the principal components of PMD. Not everything mentioned in 
the graph is actually implemented, particularly there is no graphical interface, no PVM 
adaptor (which is trivial to add) and no solvation force field. 

P M D was implemented and tested on a variety of workstations, and parallel 
adaptors exist for workstation networks, for the Thinking Machines CM-5 and 
for the Intel Paragon. The network and the Paragon implementation both use a 
T C G M S G adaptor, the CM-5 has a specific adaptor. Implementations for P V M 
and the Cray T3D are planned. Donations of development time on any kind of 
message passing parallel machine will be gratefully accepted and quickly rewarded 
with a P M D implementation for that machine. 

To evaluate the performance of P M D both on parallel machines and on com
mon workstations, test calculations were done using a realistic model of a P O P C 
lipid bilayer patch with water consisting of 23,975 atoms. Some results are reported 
in table 2. No results are given for the CM-5, since P M D does not use the vector 
processors of that machine, rendering the benchmark meaningless. However, P M D 
was run successfully, if not fast, with 256 processors on the CM-5, demonstrating 
the high degree of parallelism possible with P M D . 

The communication code associated with the Voronoi decomposition topology 
is not well optimized yet, but, nevertheless, quite respectable speedups can already 
be achieved on the Intel Paragon, as well as on a network of HP-735 workstations 
interconnected using an A T M switch. Fig. 4 shows the dependence of the calcula-
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Table 2: Benchmark results for a realistic model of a P O P C lipid bilayer patch 
consisting of 23,975 atoms. Times are given in seconds for the F M A calculation, 
the pairlist update and the evaluation of short range electrostatic and van der 
Waals interactions. Also shown is the average total time per step, assuming a long 
range update interval of i V i n t = 20. The A L R is a Pentium desktop P C running 
N E X T S T E P , the HP-735 A T M entries refer to a workstation cluster connected via 
an A T M switch, using 4 resp. 8 machines. 

System PFMA pairlist short average 
ALR 586/60 NeXT 150 40 18 27.50 
SUN SPARC-10 110 30 14.5 21.50 
SGI Indigo/R4000 90 21 13 18.55 
DEC 3000/500 75 14 10 14.45 
IBM-590 55 27 7.4 11.50 
SGI Indigo/R4400 55 15 7.6 11.10 
SGI Onyx/150MHz 54 14 7.3 10.70 
HP 712/80MHz 57 19 6.8 10.60 
HP 735/lOOMHz 34 11.5 3.9 6.18 
Intel Paragon(16) 20 3.2 2.2 3.36 
HP-735 ATM (4) 10 2.7 1.1 1.74 
HP-735 ATM (8) 1.10 

Figure 4: Parallel benchmark results for the Intel Paragon parallel computer and for 
a cluster of HP-735 workstations connected via an ATM switch. The same 23,975 atom 
system is used as in table 2. The difference in scaling between the workstation cluster 
and the Paragon is due primarily to the difference in speed between the individual 
nodes rather than to the communications network. These results are based on new, 
non-optimized communication code, scaling is expected to improve in future releases. 
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tion time on the number of nodes. At least 50% of the communication can still be 
eliminated by a more optimized implementation which will hopefully be available 
in the next release of P M D . 

Discussion and Outlook 

It should be clear from this presentation that P M D is not a finished program, but 
should be viewed as a workbench for algorithm development in molecular mod
elling. The features that make it unique are that it is fast, fully scalable and does 
not neglect long range interactions. Using the F M A , P M D removes the tradeoff 
that has traditionally been required between speed and long range interactions, 
and by its scalable nature it also removes most barriers to the simulation of very 
large systems. Moreover, P M D makes large parallel supercomputers more accessi
ble, since the same program that runs on a desktop workstation will run identically 
on the parallel machine. 

Since the basic algorithms and data distribution mechanisms are largely in 
place, future developments will concentrate on application oriented issues. Mecha
nisms are needed to build structures of proteins and explicit solvent models when 
coordinates are not known. Algorithms to add hydrogens and sidechains to pro
tein backbones are being considered. Mostly, however, P M D will be extended to 
provide better solvation treatment, on the basis of solvent accessible surface areas 
and the Poisson Boltzmann equation. Methods for the derivation of forces from 
continuum electrostatics will be explored. 
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Chapter 12 

Parallelization of Poisson—Boltzmann 
and Brownian Dynamics Calculations 

Andrew Ilin1, Babak Bagheri1, L. Ridgway Scott1, James M. Briggs2, 
and J. Andrew McCammon2 

1Department of Mathematics and 2Department of Chemistry, 
University of Houston, Houston, TX 77204 

Poisson-Boltzmann calculations are increasingly used in chemistry and 
biochemistry to determine the electrostatic free energy of solute molecules 
in electrolyte solutions. The forces acting on such molecules can also be 
calculated and used in Brownian dynamics simulations of diffusional mo
tion of the solutes. All of these calculations become computationally 
intensive as the model systems are described in greater detail. Here we 
describe recent advances in the parallelization of such calculations. Illus
trative results are presented for the enzyme acetylcholinesterase. 

Electrostatic interactions play a key role in determining the stability of confor
mations and complexes of solute molecules in solution. Because these interactions 
are long-ranged, they also play an important role in determining the rates of dif
fusional conformational change and of diffusional encounter of solute molecules. 

The most accurate computational models of the systems listed above would 
include an atomistic description of both the solvent and solute molecules of interest. 
But such fully microscopic models, as employed for example in molecular dynamics 
simulations, can not yet be used in studies of many processes of interest because 
of current limitations in the performance and capacity of computers. 

Fortunately, the solvent and secondary solute species such as spectator ions can 
he replaced to a good approximation in many cases by continuum models, and the 
continuum treatment can even be employed for the interiors of the solute species of 
primary interest (1). For example, simulations hased on such models were recently 
used successfully to guide the first quantitative engineering of a faster enzyme that 
was then proven in the laboratory (2,3). 

Simulations based on continuum-type models can still be very demanding of 
computational resources, however. For example, it is not yet possible to use 
the standard continuum method for calculating electrostatic forces (based on the 

0097-6156/95/0592-0170$12.00A) 
© 1995 American Chemical Society 
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12. ILIN ET AL. Poisson-Boltzmann and Brownian Dynamics Calculations 171 

Poisson-Boltzmann equation, see below) to recompute these forces during a Brow
nian dynamics simulation of the encounter of a substrate with an enzyme molecule. 
Instead, the substrate is typically treated as one or more test charges moving in the 
fixed field of the isolated enzyme; this approximation ignores certain interactions, 
such as those between the charges in the substrate and their image charges due to 
the dielectric interface between the enzyme and the solvent. 

In the present paper, we outline progress in the development of algorithms and 
codes to speed continuum-type calculations on parallel computers. The computer 
software used is the University of Houston Brownian Dynamics (UHBD) program (1) 
and the computations are done on the Intel Delta machine. Here, we first describe 
in some detail how the electrostatic calculations can be parallelized efficiently. We 
then illustrate how the Brownian dynamics trajectory calculations can be paral
lelized, particularly by improvements in the generation of random numbers. We 
then illustrate the use of such methods for a system of great biomedical importance, 
the enzyme acetylcholinesterase. 

Mathematical Model of Electrostatics 

The Nonlinear Poisson-Boltzmann equation (NLPBE) can be used to calculate the 
electrostatic potential field φ(τ) of a molecule (4,5). The N L P B E can be written 
in the following dimensionless form for a univalent electrolyte solution: 

- V · e(r)ν.φ + k(r) sinhφ = p(r) m Ω E R 3, (1) 
φ(τ) = Φ0(Γ) on 9Ω, 

where e(r) is the dielectric constant, p(r) is the charge density, k(r) is the dimen
sionless solvent ionic strength, r is a position, and φο(τ) is assumed to be known 
on the boundary of the domain Ω. Typically e(r) and k(r) are piecewise constant 
functions, p(r) is a sum of Dirac 6-type singular functions, hut φ(τ) and ε(τ)ν.φ(τ) 
are continuous. 

Numerical method 

When k(r) has relatively small values, i.e. the N L P B E is not "too nonlinear" a 
conjugate gradient method based on a variational formulation of the given nonlinear 
problem can be used for solving Equation 1 (4). 

The full nonlinear Poisson-Boltzmann equation with the given boundary con
ditions can be solved by a damped version of Newton's method: 

Φ.η*α = Φ. + ωξ (2) 

where the damping factor ω. € [0,2] and the correction ξ is the solution of the 
linearized equation: 

- V · e{r)V_£ + k{r) cosh<£(r)£ = p(r) + V · e(r)V#(r) - k{r) s inner ) . (3) 
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172 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 1: Sparsity of A 

The convergence criterion for Newton's method is 

M\\<6*Ml 

where \\ξ\\ is some norm of correction ξ and 6χ is a convergence tolerance. 
Typical difference methods for the solution of equation 3 lead to the algebraic 

system of equations 
Ax = 6, (4) 

where a: is a discretization of the correction potential ξ, h is a discretization of the 
residual term in Equation 3 (ρ + V · eS/φ — fc(r)sinh<£), A is the sparse matrix 
corresponding to an approximation of the linear differential operator —V · eV + 
k(r) cosh φ. 

In three dimensions and for the standard seven-point difference stencil, the 
matrix A consists of the following diagonals (6) 

A = Ε + C + Β + D + BT + CT + ET = L + D + LT. (5) 

shown in Figure 1, where L is the lower triangular matrix with three diagonals. 
Numerical experiments have shown that the Preconditioned Conjugate Gradi

ents (PCG) method, shown in Figure 2 (where M is the preconditioning matrix), 
is preferable to other iterative techniques (6-8) for solving this system of equations. 
We will consider diagonal and Incomplete Cholesky preconditioner M , having a 
sparsity (nonzero) structure subordinate to that of A. We can exploit parallelism 
in the following steps of one iteration of the P C G algorithm (which takes a total 
of 35ΛΓ flops): 

1. vector addition and multiplication by a constant (6N flops), 

2. vector multiplication (r» · M~lr.i) and (p{ · Ap{) (4N flops), 
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12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 173 

ro = b — Ax 
PQ = M~lrQ 

For i = 0 to convergence 
a = (n · A f V i ) / ^ · Api) 
®<+i = + «Ρ» 

= f\ — aApj 
/? = ( r < + 1 · M-lri+l)l{n · M " 1 ^ 

End For 

Figure 2: Preconditioned Conjugate Gradients 

3. evaluation of Ap{ (13Ν flops), 

4. solution of pi = M r * (12JV flops, if A was prescaled by the method which 
we will describe later), 

where Ν is the number of unknowns. 
As we will see in the following sections, the effective introduction of parallelism 

into last item is the most challenging aspect of parallelizing P C G . Parallelizing of 
other items were studied in Ref. (9). 

Para l le l preconditioning 

M is a preconditioning matrix which should be easily invertible. The more closely 
M resembles A , the fewer iterations will be required, but the more difficult will be 
the problem of inverting M. A preconditioner which is easy to implement is the 
diagonal M = D~l. Diagonal preconditioning will not, however, increase the rate 
of convergence of the conjugate gradient method dramatically. 

A more effective preconditioner is the Incomplete Cholesky (IC) factorization 
of A (10,11): 

M = (L + Δ)Δ-1{Δ + ΣΤ), (6) 

where the lower triangular matrix L + Δ consists of four diagonals, shown in Figure 
3. 

The entries of the diagonal matrix Δ are given by 

L2 2 2 

Qijk — Uijk ς. ~ χ , V 1 ). 
Oi-ljk °ij-l,k Q%j,k-1 

where d,^, t̂-ij/fc» Ctj-i^j e%j,k-\ are entries of diagonal matrices D, B, C , E respec
tively. Since the preconditioning matrix is given as a product of two triangular fac
tors (Equation6), the preconditioning phase requires the solution of two triangular 
systems. 
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174 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Figure 3: Sparsity of the lower triangular matrix of IC preconditioner 

(411) (321) (231) (141) (312) 

/ I I I ! 
1-si node 

Q2Q (132) (213) (123) (114) 

/ I Î \ 
2-nd node ^ 

Figure 4: Graph of dependences of recurrence (8) 

A straightforward way to parallelize triangular solves is to write the algorithm 
as a recurrence and schedule the computation to take advantage of whatever par
allelism there is. For example, for the lower triangular factor, the recurrence has 
the following form: 

Pijk = Tyk - bijkPi-ijk ~ CijkPij-i,k - eijkPij,k-i- (8) 

The level-scheduled, multicolor and hyperplane methods (12-17) use the graph of 
dependences of the recurrence equation 8 (shown in Figure 4) to discover paral
lelism. For example, the level-scheduled method sorts the dependence graph topo-
logically and distributes the calculation of,each level among as many processors as 
possible. These approaches have the following disadvantages: 

• considerable amount of communication between processors, 

• bad load balance, 
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12. ILIN ET A L Poisson-Boltzmann and Brownian Dynamics Calculations 175 

• an order of computation different from the sequential algorithm. 

A result of the first two disadvantages is that these methods are not scalable. Thus 
solving a 2-D problem on 4 processors gave a speedup factor of only 2.1 (16). 

The approach we present here is to avoid the complete solution of the triangular 
systems. It is equivalent to introducing additional incompleteness into the IC 
preconditioner so that the matrix Lp + Δ is block-diagonal (see Figure 5). Notice 
that if the number of grid-points in the z-direction is a multiple of the number of 
processors then the "parallelizable" matrix Lp differs from the original one in only 
some part of the third subdiagonal. 

The described parallel ICCG method (PICCG) has the following advantages: 

• no communication between processors during the preconditioning phase, 

• perfect load balance, 

• no reordering of the computation. 

The disadvantage of this method is the dependence of the convergence rate on the 
number of processors. We note that the parallel algorithm is not equivalent to the 
sequential algorithm. 

Parallelization of the UHBD program for the Delta was performed using the 
Pfortran compiler (18). Our approach to the parallelization of the electrostatic 
phase is related to domain decomposition techniques. A l l domain data are dis
tributed among processors. This requires data exchange between processors for 
evaluation of Ap. Also, vector multiplication requires global summation (reduc
tion) of local results computed by each processor. The parallel ICCG method 
described above has also been used for the parallel mosfet simulation (19). 

Figure 5: Sparsity of "parallelizable" IC preconditioner 
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176 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Scaling and Modification 

To reduce the number of operations per iteration, we can scale A symmetrically 
by 

A! = A~l/2AA-l!\ (9) 

so that the preconditioner M' of the scaled matrix A' has the identity matrix as 
its diagonal A' = J". With this change the Equation 4 becomes 

A'x1 = (10) 

where x' = Al/2x,b' = A~1/2b. 
To reduce the number of iterations, we can introduce a parameter a into the 

preconditioner by modifying its diagonal as follows. 

r , bi-ijkjbi-ijk + a(cj-ijk + e t-ijjQ) 
Oijk = dijk 7 

Q j - M f c t j - M + ^(frtj-u + e<j-itfc)) 

e>j,fc-i(eij,fc-i + a(&tj,fc-i 4- c%j,k-i)) 

The resulting matrix is known as the Modified Incomplete Cholesky (MIC) pre
conditioner (7,17). One should choose the value of α to minimize the number of 
iterations. Numerical experiments show that a = 0.95 is often optimal for the 
one processor case and corresponding M I C C G method converges two times faster 
than with ICCG. For a large number of processors the optimal a gets smaller and 
convergence of M I C C G and ICCG is about the same (9). 

Eisenstat's implementation 

It has been shown that a significant reduction in C P U time is obtained for the 
symmetrically scaled (M)ICCG algorithm using Eisenstat's implementation (17). 
Introduced below is a similar improvement to our parallel (M)ICCG. 

Let matrix A = L + D + LT be symmetrically prescaled according to Equation 
9 and M = (Lp + /)(/ + Lp) be the corresponding parallel preconditioner. The 
idea of Eisenstat's implementation is to form the preconditioning matrix explicitly 
rather than using the preconditioner for redefining of the inner products for 7\ as 
in Figure 2. 

Consider the following system: 

A'x' = (12) 

where A9 = {Lp + J ) " 1 A(I + ΐζ), χ' = (I + ΐξ)χ, b' = (Lp -f I)-lb. One may 
check that M~lA = P~lA'P with Ρ = I + Lp so A' and M~lA have the same 
condition numbers. This means that the preconditioned conjugate gradient method 
for Equation 4 has the same convergence rate as the pure conjugate gradient method 
for the Equation 12. 
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12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 177 

So we may omit the preconditioning phase and calculate A'p' using the following 
formula: 

A'p' = t' + (Lp +1)" — Lp + D — 21 + LT — LT

p)t' + p')> (13) 

where f = (J + L^)~lp'. Note that if the number of processors ρ is 1, then the 
computation of A'p1 costs 15ΛΓ flops. For ρ > 1 it costs 177V flops; SN flops for 
one conjugate gradient iteration is saved since original ICCG iteration costs 25iV 
flops. 

Brownian Dynamics 

In a typical application, the phase of UHBD which computes Brownian Dynamics 
trajectories simulates the movement of a test particle toward the molecule being 
studied. The BD algorithm uses the electrostatic potential to compute trajecto
ries of a diffusing test particle under the influence of a combination of random 
and electrostatic forces. A detailed description of the implemented algorithm is 
available (20). 

The issues which make Brownian dynamics an interesting parallelization prob
lem are 

• deciding how to store the electrostatic potential needed to compute forces, 

• balancing the computational bad, and 

• generating independent streams of random numbers. 

Parallelization of Brownian dynamics is performed such that all trajectories are 
distributed among processors. Since each trajectory may travel through the whole 
domain, each processor should have access to electrostatic data in the entire do
main. This means that before Brownian dynamics is started, the program should 
make the "local" electrostatic data "global". On the other hand, once the elec
trostatic simulation is over, the space which was occupied by working conjugate 
gradient arrays (like the residual vector r. and others) can then be used for elec
trostatic potential storage. Limitations of memory on each processor dictated that 
the maximum mesh size is equal 1003. This memory restriction may be removed if 
some type of distributed-shared memory (21) or paging memory were available. 

M a i n Steps of Brownian Dynamics Simulat ion 

Consider the method of determining the diffusion-controlled rate constant for the 
simple case of a symmetric two-particle system without electrostatic or hydrody-
namic interactions. The Ermak-McCammon equation for the Brownian dynamics 
step of the particle reduces in this case to 

r = r° + R + (kBT^DFir0)^ (14) 

D
ow

nl
oa

de
d 

by
 Y

O
R

K
 U

N
IV

 o
n 

Ju
ne

 2
8,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 1
7,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



178 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

where r° is the relative position vector before a time step is taken, r is the relative 
position vector after a time step, and R is the vector of Gaussian random numbers 
of zero mean and variance 

< RiRj > = 2D6ioAt, 2 = 1,2,3; j = 1,2,3. (15) 

D is the relative diffusion constant, At is the time step, ks is Boltzmann's constant 
and Τ is the temperature. 

A set of trajectories is simulated starting on the b-surface (|r| = b) for b » d, 
(d is the diameter of each particle). Trajectories are terminated in the case of 
reaction (|r| < d) or in the case of particle escape (|r| > q,q » b). Several 
hundred to several thousand trajectories are run to calculate a reaction probability 
β 

where Ν is the total number of trajectories and NT is the number of reactive 
trajectories. The diffusion-controlled rate constant, reduced by the Smoulchowski 
result, is 

26/? 

where the quantity Ω = b/q. For the simple two-particle case described above, the 
theoretical value of kr is 1.0. Since a theoretical result is known, this is a convenient 
test of the random number generator. 

Random Number Generator 

When Brownian-dynamic trajectories are calculated in parallel, the streams of ran
dom numbers that are generated (22,23) in parallel must have low correlation. If 
they do not, then the work done in parallel may be in vain. Very similar trajecto
ries may have been calculated and hence resulting in little extra information. By 
simply adding the logical number of each process (or processor) to the seed used for 
random number generation, reasonably independent streams of random numbers 
are produced. This can be proven by computing the correlation function for two 
such streams explicitly. 

Uniform random numbers can be used to generate a Gaussian random number. 
Currently the generator of G. Marsaglia and A. Zaman (22) is used in UHBD. This 
uniform random number generator is a combination of a Fibonacci sequence and 
an arithmetic sequence. 

The Box-Muller technique is currently used to generate the Gaussian random 
numbers. For uniform random variables Ui and u2 on (0,1] one needs to calculate 

gx = ^ - 2 1 n t t i ^ cos27nz2> 9.2 = ^ - 2 1 n i t i ^ sin27nz2. (18) 

The numbers pi and 52 are normally distributed random numbers: 
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This method is easily implemented, but is computationally intensive. 
Marsaglia's method for the generation of uniform random numbers has been 

parallelized and used in UHBD. The main problem is in simplifying the Gaussian 
transform. The objective is to use a linear transform to get random numbers with 
approximately a Gaussian distribution (Equation 19). Equations 18 are not linear 
because they contain sin, cos, log. 

The distribution function fg(x) is normalized (f*™ f9{x)dx = 1). Let us divide 
the domain (—oo, +oo) using set of points {0, ±X\, ± £ 2 > · · · ± xN/2-1} as dehmiters 
such that 

/ fg(x)dx= f9(x)dx= f,(x)dx=j:. (20) 

If Ν is sufficiently large then fg(x) is approximately constant in each subdomain. 
We use the following method to calculate x». 

1 2 
X0 = 0, X i _ 1 / 2 = + , Xi = Xi-i + η—— r, t = l , . . . N/2. (21) 

The routine that calculates Xi is called only once during a BD simulation. 
It is now necessary to approximate the Gaussian transform. Consider a uniform 

random number u on (0,1], The number i = Int(iVu) - N/2 is an integer uniform 
random number and can be used to determine the subdomain. The sign of i will 
correspond to the sign of g. Then y = Nu — Int(Nu) will be a uniform random 
variable on (0,1], not correlated with i. Finally the Gaussian random variable is 

g = sign(i)(xi + (xi+1 - xjy). (22) 

This transform can be made as accurate as desired by choosing an arbitrarily large 
number TV, without significant influence on computational time. 

With the above optimization the random number generator became more than 
20 times faster without any loss in accuracy. 

Parallel Performance 

The experiments were carried out on the Intel Delta with 16MB of memory on 
each node. The initial experiment was a test case for which an analytic solution 
is known: a single-atom target molecule with 1003 grid size. A l l C P U times were 
computed using the dclockQ system routine on the Intel system. 

Figure 6 provides the total C P U time for P ICCG and BD calculations with 
5000 trajectories as a function of the number of processors P. It is clear that vec
tor multiplication time, matrix action time and preconditioning time are almost 
scalable. Reduction time, which measures global summation for vector multiplica
tion, increases proportionally to log(P), but is still much smaller than other terms. 
A n algorithm can be used whose cost does not increase with with Ρ (24). For large 
P, this will yield slightly improved overall performance. 

The most negative effect of the parallelization on distributed memory architec
ture, is data exchange time. This term is proportional to the number of neighbor 
processors which need to be involved to exchange, which is equal Int(P/n) + 1, 

D
ow

nl
oa

de
d 

by
 Y

O
R

K
 U

N
IV

 o
n 

Ju
ne

 2
8,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 1
7,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



180 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

Delta: UHBD single atom simulation (5000 trajectories on 100*3 Grid), ICCG 
10 t i 

1 0 - ' l , , . I 
ίο1 102 103 104 

Number of Processors 

Figure 6: Total C P U time for P ICCG and BD calculation with 5000 trajectories 
and a single-atom target molecule on a 1003 grid as a function of the number of 
processors on Delta 

where the mesh size s Ν = η 3 . The last term dominates over others when Ρ > n. 
For large P , a more complex decomposition should be used (the data presented 
here are based on strip decompositions) (24). This will have a substantial effect on 
the overall performance for large P. 

Figure 7 demonstrates the advantage of our parallel ICCG solver for the elec
trostatic potential over the simpler diagonal prescaled preconditioned conjugate 
gradient method (DCG). Since PICCG converges twice as fast as D C G the first 
one is preferable. 

The Figure 7 also demonstrates that increasing the number of processors ini
tially slows down the convergence of the parallel ICCG. The reason is that the 
original (single processor) IC preconditioner (Figure 3) is closer to A~l than the 
parallel IC preconditioner (Figure 5). The most surprising result which can be 
seen in Figure 7 is that convergence improves for both D C G and P ICCG for large 
numbers of processors. This improvement can be explained by the fact that for 
large numbers of processors, each processor performs local sumations on smaller 
sets of floating point numbers and hence accumulates smaller round-off errors. 

Figure 8 shows the difference of minimum and maximum C P U time for the 
electrostatic and Brownian dynamics computations. We see that the Brownian 
dynamic phase is more poorly load balanced than the electrostatic phase. The 
reason is that different trajectories have different lengths. When the total number 
of trajectories is small, different processors spend widely varying amounts of time 
doing BD (i.e. bad load balance). Parallel Brownian dynamics is most efficient 
when the number of trajectories is much larger than the number of processors so 
that all processors do approximately the same amount of work. 
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Comparison of LPBE Solvers on 100x100x100 Grid on Delta 

Number of Processors 

Figure 7: Total number of iterations for P I C C G and D C G for a single-atom 
molecule on a 1003 grid as a function of the number of processors on Delta 

D̂ rta: UHBD single atom simulation (5000 trajectories on 100*3 Grid), ICCG 

ο 
I 

1 , 

" -o Min. Solver 

10 10 
Number of Processors 

Figure 8: Total C P U time (including maximal and minimal time) for P I C C G and 
B D calculation with 5000 trajectories and a single-atom target molecule on a 1003 

grid as a function of the number of processors on Delta 
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Sample Applications 

The second experiment was for a case of biomedical interest and involved an enzyme 
thought to be involved in Alzheimer's disease, as well as the target for biological 
nerve agents. The enzyme studied was Acetylcholinesterase (AChE), from the 
electric fish (Torpedo californica). This enzyme is found in cholinergic synapses 
and catalyzes the hydrolysis of the neurotransmitter acetylcholine (ACh) into the 
acetate ion and choline. This process represents the termination of nerve signal 
transduction. The main feature of choline is the presence of a positively charged 
functional group (a quarternary ammonium ion). AChE has been shown to operate 
near the diffusion controlled limit so Brownian dynamics simulations of the sub
strate, ACh, approaching the enzyme should reveal any salient features of the effect 
of the electrostatic environment around the enzyme on diffusion of the substrate. 

The X-ray structure for AChE is known and has been shown to be a homod-
imer which contains two active sites, one per identical monomer (25). The entire 
system consists of 10,416 atoms which includes hydrogens on the heteroatoms. The 
protonation states of the ionizable residues in AChE were determined with a pro
cedure developed for UHBD in which each ionization state is computed based on the 
electrostatic environment for that particular amino acid residue in its position in 
the enzyme. 

The electrostatic potential due to the enzyme in a dielectric continuum of water 
(ε = 80) is presented in Figure 9. A grid size of 65 3 and a grid spacing of 2.8 
A were required in order for the grid map to be compatible with the version of 
the display program that we used (GRASP (26)). The electrostatics part of the 
calculation used about 9 cpu seconds and needed 90 iterations while using 16 nodes. 
The entrances to the two active sites are clearly identifiable by the solid black 
electrostatic potential surfaces for each monomer at -2.5 kcal/mol-e. Note that the 
active sites are oriented in opposite directions so as not to directly compete for the 
substrate. Electrostatic potential contour lines are shown at -2.0, -1.25, and -0.75 
kcal/mol-e to highlight the fact that the potential extends far from the active sites 
and effectively steers the positively charged ACh substrates to the active sites. 

A sample Brownian dynamics trajectory is shown in Figure 10. In a typical 
Brownian dynamics experiment, many such trajectories are run and checked to see 
whether they satisfy the specified conditions for reaction. In the present simulation, 
the diffusing particle (ACh) is treated as a single sphere with a unit positive charge 
and a hydrodynamic radius of 5 Ά. The time step in the region near the enzyme 
is 0.02 ps; this trajectory represents 4000 ps. Note that the diffusing substrate 
spends most of its time under the influence of the negative region of the electrostatic 
potential of the enzyme active site. 

Conclusions 

The determination of electrostatic free energy can be accomplished efficiently on 
distributed memory computers. Supercomputer-level performance is obtained on 
only modest numbers of processors, and techniques have been identified to allow 
the use of hundreds of processors efficiently. The most severe constraint in using 
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Figure 9: Electrostatic potential surface (solid black) around A C h E and con
toured at -2.5 kcal/mol-e. Electrostatic potential contour slices are shown for 
energy levels -2.0, -1.25 and -0.75 kcal/mol-e. Note that this is a homodimer 
with two counteropposed active sites. These data were generated with the 
UHBD program. The figure was generated with the GRASP software (26). 

Figure 10: A sample trajectory from a Brownian dynamics run of a single 
sphere with a unit positive charge diffusing up to one of the active sites in 
AChE. The trajectory starts to the lower left of the enzyme dimer and diffuses 
up and into the negative electrostatic field of one of the active sites. The data 
were generated with the UHBD program and the figure was generated with the 
QUANTA software (Molecular Simulations, Inc. , Burlington, M A 01803-5297) 
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distributed memory computers for such calculations is the storage required for the 
electrostatic potential during the Brownian dynamics phase. Efficient support for 
distributed shared memory would remove this constraint. 

Acknowledgments 

This work was supported in part by grants from NIH, the Robert A . Welch Founda
tion, the NSF and A R P A , C R P C , and the NSF Supercomputer Centers Metacenter 
Program. 

Literature Cited 

(1) Madura, J. D.; Davis, M. E.; Gilson, M. K.; Wade, R. C.; Luty, Β. Α.; Mc-
Cammon, J. A. Rev. Comp. Chem. 1994, 5, 229-267. 

(2) Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.; 
Banci, L.; Hallewell, R. A. Nature 1992, 358, 347-350. 

(3) McCammon, J. A. Current Biology 1992, 2, 585-586. 
(4) Luty, Β. Α.; Davis, M. E.; McCammon, J. A. J. Comp. Chem. 1992, 13, 

1114-1118. 
(5) Holst, M.; Kozack, R. E.; Saied, F.; Subramaniam, S. Multigrid Solution of 

the Poisson-Boltzmann Equation. Submitted for publication, 1994. 
(6) Davis, M. E.; McCammon, J. A. J. Comp. Chem. 1989, 10, 386-391. 
(7) Holst, M.; Saied, F. J. Comp. Chem. 1993, 14, 105-113. 
(8) Il'in, V. P. Iterative Incomplete Factorization Methods. World Scientific: Sin

gapore, 1992. 
(9) Bagheri, B.; Ilin, Α.; Scott, L. R. Parallelizing UHBD. Research Report 

UH/MD 167, Dept. Math., Univ. Houston, 1993. available apon request by 
e-mail to scott@uh.edu. 

(10) Meijerink, J. Α.; van der Vorst, H. A. Mathematics of Computation 1977, 31, 
148-162. 

(11) Meijerink, J. Α.; van der Vorst, H. A. J. Comp. Phys. 1981, 44, 134-155. 
(12) Berryman, H.; Saltz, J.; Gropp, W.; Mirchandaney, R. J. of Parallel and 

Distributed Computing 1990, 8, 186-190. 
(13) Foresti, S.; Hassanzadeh, S.; Murakami, H.; Sonnad, V. Parallel Computing 

1993, 19, 1-8. 
(14) Hammond, S. W.; Schreiber, R. International Journal of High Speed Com

puting 1992, 4, 1-21. 
(15) Ortega, J. M. Itroduction to Parallel and Vector Solution of Linear Systems. 

Plenum Press: New York, 1988. 
(16) Rothberg, E.; Gupta, A. Parallel Computing 1992, 18, 719-741. 

D
ow

nl
oa

de
d 

by
 Y

O
R

K
 U

N
IV

 o
n 

Ju
ne

 2
8,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 1
7,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 

mailto:scott@uh.edu


12. ILIN ET AL. Poisson—Boltzmann and Brownian Dynamics Calculations 185 

(17) van der Vorst, H. A. Comp. Phys. Commun. 1989, 53, 223 - 235. 
(18) Bagheri, B.; Clark, T. W.; Scott, L. R. Fortran Forum 1992, 11, 20-31. 
(19) Bagheri, B.; Ilin, Α.; Scott, L. R. Parallel 3-D MOSFET Simulation. In 

Proceedings of the 27th Annual Hawaii International Conference on System 
Sciences, volume 1, pp. 46-54, Maui, HI, 1994. 

(20) Bagheri, B.; Ilin, Α.; Scott, L. R. A Comparison of Distributed and Shared 
Memory Scalable Architectures. 1. KSR Shared Memory. In Proceedings of the 
Scalable High Performance Computing Conference, pp. 9-16, Knoxville, TN, 
1994. 

(21) Almasi, G. S.; Gottlieb, A. Highly Parallel Computing. The Ben-
jamin/Cummings Publishing Company Inc.: Redwood City, CA, 1994. 

(22) Marsaglia, G.; Zaman, Α.; Tsang, W. W. Statistics and Probability Letters 
1990, 8, 35-39. 

(23) James, F. Comp. Phys. Commun. 1990, 60, 329-344. 
(24) Fox, G. Solving Problems on Concurrent Processors, volume 1. Prentice Hall: 

Englewood Cliffs, 1988. 
(25) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, Α.; Toker, L.; 

Silman, I. Science 1991, 253, 872. 
(26) Nicholls, Α.; Honig, B. GRASP. Columbia University: New York, v. 1.10. 
RECEIVED November 15, 1994 

D
ow

nl
oa

de
d 

by
 Y

O
R

K
 U

N
IV

 o
n 

Ju
ne

 2
8,

 2
01

2 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e:

 M
ay

 1
7,

 1
99

5 
| d

oi
: 1

0.
10

21
/b

k-
19

95
-0

59
2.

ch
01

2

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



Chapter 13 

Classical and Quantum Molecular Dynamics 
Simulation on Distributed-Memory Massively 

Parallel Computers 
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The implementations of classical and quantum molecular dynamics 
simulations on distributed-memory massively parallel computers are 
presented. First, we discuss the implementation of large-scale 
classical molecular dynamics (MD) simulations on SIMD 
architecture parallel computers, and in particular, on the family of 
MasPar distributed-memory data parallel computers. We describe 
methods of mapping the problem onto the Processing Elements 
(PE's) of the SIMD architecture, and assess the performance of each 
strategy. The detailed implementations of this data parallel construct 
are illustrated for two case studies: classical MD simulation of a two
-dimensional lattice and the photodissociation mechanisms of a 
diatomic iodine impurity in a three-dimensional argon lattice. We 
also present a study of quantum dynamics using the Time-Dependent 
Self-Consistent Field (TDSCF) method. These calculations 
demonstrate the potential of using massively parallel computers in 
MD simulations of thermodynamic properties and chemical reaction 
dynamics in condensed phases. 

Molecular dynamics (MD) simulation using digital computers has proved to be a 
useful tool for studying the properties of liquids, solid, polymers, and other 
condensed phase systems (1-4). In the past decade, the growing availability of fast 
vector and parallel supercomputers has made it possible to apply M D to 
increasingly more realistic and challenging problems in the Fields of chemistry, 
biology, physics and material science (5-8). With the advent of high performance 
parallel computers (9-11), we face the challenge of developing new methods that 
make optimal use of these computational resources. In this report, we will examine 
the practicalities of parallelizing the basic M D algorithms on distributed-memory 
single instruction-multiple data (SIMD) machines, using the high performance data 
parallel programming language Fortran 90. The particular hardware used belongs 
to the MasPar family of massively parallel computers. 

The potential for parallelism in many scientific applications, including 
molecular dynamics simulation, is primarily due to data parallelism. Here, the same 
operation is applied simultaneously to all elements of a large data structure. 

0097-6156/95A)592-0186$12.00A) 
© 1995 American Chemical Society 
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13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 187 

Exploiting data parallelism on distributed memory SIMD machines requires careful 
partitioning of the data structure and computational tasks in order to benefit from 
the architecture. In this paper, we describe the parallelization of the M D force 
evaluation routine for many particles interacting by pairwise forces. For a system 
containing on the order of 1000 particles undergoing mutual pairwise interactions, 
our results indicate that a SIMD computer system can be a very efficient 
computational platform for M D simulations. The need for modification of the 
algorithms to achieve optimal performance and scalability for very large systems is 
also discussed. 

The remainder of this paper is organized as follows. First we briefly describe 
the machine characteristics of the MasPar MP-2 massively parallel computer. Then 
we review the classical and quantum molecular dynamics methods. The detailed 
implementation of each algorithm on the MP-2 and the C P U performance results 
are described and followed by a discussion of the results and future work. 

The MasPar MP-2 Massively Parallel Computer System 

Hardware Overview. The MasPar Computer Corporation MP-2 is a fine-grain 
massively parallel computer. It uses a single instruction-multiple data (SIMD) 
architecture. Here, each processor element executes the same instruction, 
broadcasted by a processor array control unit (ACU), simultaneously, on its unique 
set of data. The MP-2 has from 1024 to 16,384 32-bit processing elements (PE's). 
Each PE contains a 32-bit A L U and floating point (FP) hardware to support IEEE 
32- and 64-bit arithmetic, and has a local memory of either 16 or 64 Kbytes. 
Aggregate double precision peak floating point performance for a 4K processor 
machine is 600 Mflops. 

The interconnection scheme for the processing elements in the MP-2 consists 
of a two-dimensional mesh with toroidal wraparound. There are two distinct types 
of communication patterns supported by the hardware. Local grid-based patterns 
are supported through direct use of a two-dimensional torus grid with 8-way 
nearest-neighbor communication (X-Net), while general patterns are supported 
through the global router, which implements arbitrary point-to-point 
communication. The general purpose network provides a bandwidth in excess of 1 
Gigabyte/sec, while the X-Net provides an aggregate bandwidth exceeding 20 
Gigabytes/sec in a 16K processor system. 

The MasPar MP-2 is controlled by a serial front-end DECstation 5000 model 
240. Application programs are compiled, debugged, and executed on the front-end 
computer, passing MP-2 instructions to the A C U as appropriate. To facilitate the 
storage of large amounts of data for data-intensive applications, the MP-2 is also 
equipped with a disk array system, which is NFS mountable and has 11 Gbytes 
capacity of formatted data with a sustained 12 MB/sec data transfer rate. 

Programming Model and Environment Overview. The programming model for 
the MasPar massively parallel computer is data parallel computing, which means 
that the same operations are performed on many data elements simultaneously. 
Each data element is associated with a single processor. Applications are not 
restricted, however, to data sets matching exactly the physical size of the machine. 
In general, data parallel applications often require many more individual processors 
than are physically available on a given machine. The MasPar system provides for 
this through its virtual-processor mechanism, supported at the MPFortran (MPF) 
(12) level, and is transparent to the programmer. MPF is based on the Fortran 90 
ISO standard (13). If die number of processors required by an application exceeds 
the number of available physical processors, the local memory of each processor is 
split into as many layers as necessary, with the processor automatically time-sliced 
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among layers. If V is the number of virtual processors and Ρ is the number of 
physical processors, each physical processor would support V/P virtual processors. 
The ratio V/P is called the virtual-processor, or VP, ratio (14,15). The concept of 
parallel virtuality is achieved by using both optimizing compiler technology and 
architecture design, in contrast with the Thinking Machine CM-2 implementation 
(16) , which depends only on architecture design. MPF, the MasPar implementation 
of Fortran 90, allows the user to easily handle very large data sets. With MPF, the 
MP-2 massively parallel architecture is completely transparent. While working with 
a single application program, the MPF optimizing compiler automatically separates 
scalar and parallel code, assesses the MP-2's different functional units as needed, 
and integrates all communications and I/O operations. 

Another very useful tool is the MasPar Programming Environment (MPPE) 
(17) , which provides an integrated graphical interface environment for developing 
application programs. 

MasPar Math and Data Display Library. The M P M L (MasPar Mathematics 
Library) (18) consists of a set of routines for the implementation of data parallel 
mathematical operations. It contains three primary groups of routines: solvers, 
linear algebra build blocks, and fast Fourier transforms (FFTs). The solvers include 
a dense matrix solver, a Cholesky solver, out-of-core solvers, and conjugate 
gradient solvers. The linear algebra building block routines include versions that 
operate on blocks of memory layers, ;c-oriented vectors, y-oriented vectors, and 
matrices. The FFT routines include both real and complex versions in most cases. 
The eigensolvers are under development, and are expected to be released with the 
new version of system software. 

Theoretical Background of the Molecular Dynamics Method. 

Classical Molecular Dynamics Simulation. Classical molecular dynamics 
simulations are based on a numerical solution of Hamilton's equations of motion 
(19): 

ËL 
dt 

dt 
= - V ? H = Ft. i=7,... (1) 

where H is the system Hamiltonian, which describe the time evolution of the 
Cartesian coordinates rt and momenta p, for a collection of Ν particles with 
masses m/ e The computationally most intensive step in an M D simulation is the 
evaluation of the forces: 

F , . = - V , V , i=7,...,JV (2) 

which are the gradients of the potential functionVfa,~,rN) describing all the 
interactions present in the system. The interaction potential may be further divided 
into bonded and nonbonded interactions, and is usually modeled by analytical 
functions (3), although ab initio molecular dynamics methods have been introduced 
(20). Although the interaction potential functions are evaluated analytically, their 
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13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 189 

computational effort nevertheless consumes more than 90% of the computer time 
(3). The fact that most of the computation in an M D simulation is concentrated in 
the evaluation of the force makes it attractive to consider implementing the M D 
code on a parallel computer architecture. For the case of simple pairwise additive 
potential evaluations on conventional serial or vector machines, a Fortran code for 
evaluating the forces requires a loop over the N(N-1)I2 distinct pairs of the Ν atoms. 
The cost of evaluating the forces and potential energy of an N-atom system when all 
interactions are considered thus scales as N2, which causes a severe obstacle to the 
simulation of very large systems. 

Trajectory Propagation by the Velocity Verlet Algorithm. To integrate the 
equations of motion we adopted the velocity Verlet algorithm (3). This method is 
based on a direct solution of the second-order Newton's equations corresponding to 
the pair of first-order Hamilton's equations of Eq. (1): 

d2f. -

^ = F. i = l,...,N (3) 

The equations for advancing the position can be written as follows (3): 

r,(f + At) = F,(0 + AtpM I m.t + (1 / 2)A/ 2F f(i) I m, i = 1,· · -9N 
(4) 

r,(f - At) = Γ,(0 - Atp.it) I m.t + (1 / 2)Δί2^(0 / mf ι = 1,-

where the momenta /?,(f) are evaluated from the following formula: 

ftM-^^^-^^l / = (5) 
2At 

A detailed analysis of the stability of this algorithm can be found in Ref. (3). The 
advantage of using the Verlet algorithm instead of more sophisticated integration 
algorithms is its simplicity. In addition, the Verlet algorithm calls the force 
evaluating routine only once for each time step advanced. Gear and other predictor-
corrector based integration algorithms need to call the force routine twice for each 
integration cycle. 

Quantum Molecular Dynamics Simulation. An exact quantum dynamics study is 
based on solving the time-dependent Schrodinger equation (21): 

a % r v i , ; 0 4 y ( f t > „ A ; t ) [ ( 6 ) 

where Η is the Hamiltonian operator: 

^ ft2 c 

The (ft/'-vifo) are a set of vibrational coordinates and (m^-",?/^) are the masses 
of the particles comprising the system. Solution of this exact problem numerically 
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is currently intractable for more than 4 particles, and approximations must be used 
to study the quantum dynamics of many-body systems. The approximate approach 
we employ is the quantum Time-Dependent Self-Consistent Field (TDSCF) method 
(22,23). 

We now illustrate the TDSCF approach by considering a collinear model 
system of anharmonic oscillators. The method is based on treating each vibrational 
mode of the system by a single mode wave function affected by the average 
interaction with other modes (22,23). The validity of the TDSCF approximation 
has been discussed previously (24). Using the TDSCF ansatz, the total wave 
function of the system is written as a product of single mode wave functions (22): 

^(qlf-,q.;t)sf[^qi;t) (8) 
t=l 

where 0, (*/,;£) is the one degree of freedom wave function which describes the ith 

vibrational mode. The TDSCF equations of motion can be written in the following 
form (22): 

dt 
Kct(qk;t)<pk(qk;t) (h*l....Jt) (9) 

where 

and 
2mk dql 

\i*k ! 

(10) 

(11) 

are the single mode TDSCF potential energy functions. Note that Vk(qk;t) 
depends on qk explicitly, and also on the dynamics of the other modes implicitly, 
through the states 0<(^;Ο with ΧΦ k in Eq. (11). Solution of the above equations is 
carried out simultaneously and self-consistently for all the vibrational modes. Thus 
a multi-dimensional wave function is reduced to a product of one-dimensional wave 
functions. 

Wave Packet Propagation by the G r i d Method. The wave packet 
propagation procedure used is adapted from several existing grid methods (25-28). 
The single mode wave function is discretized, meaning that they are represented by 
their values at a set of one dimensional grid points. The grid used here is a one-
dimensional lattice in the coordinates q and the domain are chosen to span the 
dynamically relevant range of coordinate space. To calculate the time evolution of 
the wave function, it is necessary to evaluate the SCF Hamiltonian operator 

Λ?σψ«·(?,·;*)» which can be decomposed into potential energy and kinetic energy 
operators. The action of potential operator V on ψ is local, and its effect on the 
wave function is simply multiplication at each of the discrete grid points. The 
operation of the kinetic operator Τφ^{;ΐ) is evaluated by the Fourier method 
(23,25-28). The method involves two fast Fourier transforms. First φ^ι',ϊ) is 
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13. LI ET AL. Classical and Quantum Molecular Dynamics Simulation 191 

Fourier transformed to φ^Ρι',ί) in momentum space, then multiplied by 
-h2pf 12m{ and the products are inverse Fourier transformed back to the 
coordinate space. 

Time propagation is accomplished by the second order differencing (SOD) 
scheme (23). The SOD scheme can be expressed as: 

ψ(ί + At) = ψ(ΐ - At) - 2ιΗψ(ί), (12) 

where the operation of the Hamiltonian on a wave packet is evaluated by the FFT 
method as discussed above. For a reasonably small time step, this procedure 
preserves both the norm of ψ and its energy. The detailed stability analysis of this 
wave packet propagation scheme was given in Ref. (25). 

In summary, the TDSCF algorithm involves propagation of the single mode 
wave functions for all the TDSCF modes using the SOD scheme under the mean 
field potential function as defined in the equation (11). After each time step, the 
mean field potential functions are updated using the new set of single mode wave 
functions. This procedure is continued until a desired number of time steps is 
reached. The time-consuming part of a TDSCF code includes two routines: (i) the 
evaluation of the effect of the Hamiltonian on the wave function and (ii) the 
evaluation of mean field potential functions. If the grid size is M and the number of 
modes is n, for a serial computer these two steps scale as η In M and Mn9 

respectively. 

Data Parallel Implementations of Molecular Dynamics Simulation 

The successful implementation of classical M D and quantum TDSCF methods on 
SIMD computers involves a number of steps. First, variables must be allocated to 
either the front end or to the DPU (data parallel units). As a rule, large arrays are 
usually stored on the DPU and all others on the front end. To save communication 
costs, certain 1-D arrays are converted into 2-D arrays using the SPREAD 
construct. Second, the program must be designed to minimize data flow between 
the front end and the DPU. Finally, Fortran 90 array constructs, such as S U M and 
PRODUCT and machine-dependent routines, such as the MasPar fast Fourier 
transform routines, should be employed where possible to increase the efficiency of 
operations on the data. 

Classical Molecular Dynamics Simulation. To overcome the unfavorable scaling 
of computational cost with particle number associated with serial computers, several 
parallel implementations of M D have been developed. We now describe two 
alternative decomposition strategies which we have used in our studies: mapping of 
each atom onto each virtual PE, and mapping each interaction (i.e., unique pair of 
atoms) onto each virtual PE. In this paper, we have implemented these strategies 
using MPFs data parallel constructs, which are data parallel extensions of standard 
Fortran (12). 

Mapping each atom onto each virtual PE. There are several applications 
that suit the MasPar MP-2 architecture very well. These systems include two-
dimensional (2D) lattice systems, which can be used to represent surface 
phenomena, 2D Ising models (29) and 2D Cellular Automata (30-33). For general 
2D lattices, the Fortran 90 array construct CSHIFT, (which uses X-Net 
communication) provides a very fast means of evaluating the forces and potential 
functions. Using the CSHIFT construct, the distance between nearest atoms along 
the χ Cartesian direction can be written as 
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192 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

dx = CSHIFT(rx,dim=l,shift=l) - rx, (13) 

where rx is the array of χ positions of each atom. The same equation also applies to 
the calculation of the separations of nearest-neighbor atoms in y Cartesian direction. 
For long-range interaction beyond the nearest-neighbor atoms, equation (13) can be 
generalized as: 

where m is number of lattice spacing needed to be included in the interaction 
potential functions. The force between atoms depends on the corresponding dx and 
dy. The total potential energy can then be obtained by the MPF construct SUM, for 
which computational cost scales as logN, as compared to Ν in the sequential 
construct, where Ν is the number of elements to be summed. 

Mapping each pair of interactions onto each virtual PE. The mapping 
scheme presented above is suitable for simulations of lattice systems—that is, 
systems with static and permanent particle positions. For an arbitrary N-body 
system with simple 2-body interactions, we use a different mapping scheme. Here, 
we map each pair of interactions onto each virtual processor element. We have 
implemented this mapping scheme in our M D simulation code using an MPF data 
parallel construct. This approach has been used previously on other SIMD systems. 
It was first carried out on the DAP (ICL Distributed Array Processor) (34) and later 
implemented on the Thinking Machine CM-2 (35). We will follow their notation 
while presenting the details of our implementation. 

The MPF data parallel construct SPREAD provides the capacity of mapping 
the pair distance calculation over all pairs into "scalar-like" vector and matrix 
computation. For example, to calculate the jc-component of the separation between 
all pairs of atoms, we use 

dx = SPREAD(jc,dim=l,copies=AO - SPREAD(x,dim=2,copies=A0 (15) 

where dx is a 2D array of size NxN, Ν is the number of atoms, and χ is a vector of 
length Ν consisting of the ^-component of atomic Cartesian coordinates. The 
MPF's SPREAD function broadcasts the specified element (x) into the array dx 
along a specific axis. Thus, the operation shown in equation (15) constructs the 
matrix of Χχ-xj values. Similar constructs are needed for the other Cartesian 
directions, and the matrix of interatomic separations r is then obtained by 

which also represents the element-by-element operations implied by the MPF array 
extension. Potential energy and interatomic forces are evaluated as their full NxN 
matrix values and then they are summed to yield vector forces and scalar potential 
energy using the SUM function within MPF. 

Quantum Molecular Dynamics Simulation. The TDSCF algorithm combined 
with the discretized representation of the single mode wave functions is an ideal 
system for the SIMD massively parallel computer architectures. Here we present 
the detailed implementation. The essence of the approach is to map each grid point 
of the wave function to each virtual PE. We discretize the single mode wave 
function on a one dimensional lattice of M grid points, and assume the system 

dx = CSHIFT(rx,dim=l,shift=m) - rx, (14) 

r = OSQKT(dx*dx+dy*dy+dz*dz\ (16) 
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consists of η TDSCF modes. Thus, the total wave function of the system can be 
represented as a two-dimensional array of rank Mxn. That is: 

W'j) ί ) = ί Δ ί / i = l ,—,Μ, j = l ,—,η , (17) 

where Aq is the grid spacing, M and η are the number of grid point and the number 
of TDSCF modes, respectively. A similar decomposition scheme has been used in 
quantum scattering calculations (36). 

One of the most time-consuming parts of the TDSCF approach is the 
evaluation of the mean-field potential given in Eq. (11). This involves numerically 
evaluating the potential integral over the η-dimensional configuration space of the 
system. For our model system, such integrals reduce to a function of one 
dimensional integrals, which are approximated by the trapezoidal rule (37). 

Timings and Performance Measurements 

Newton's equations of motion were integrated numerically using the velocity Verlet 
algorithm (3). The following CPU benchmark measurements are for 400 cycles of 
integration. 

Anharmonic 2D Lattice Model System. The MP-2204 is a 4096 processor 
massively parallel computer. The processors are arranged on a 64x64 mesh, which 
provides fast nearest-neighbor communication. The machine works well for 
explicit algorithms that take advantage of this architecture. As we mentioned 
above, a 2D lattice system fits this architecture very well. In our model 
calculations, we use a 2D Morse lattice. The Morse potential has the following 
form: 

V (R) = De[\ - exp( - /} ( /? - /U] 2 , (18) 

where R is interatomic distance, and De, β and Re are potential parameters. For 
distances greater than a cutoff R > Rc, we set the potential to zero; the potential 
outside of this radius does not need to be evaluated. In our performance studies, we 
vary Rc to determine scaling of computational effort with cutoff radius. The 
detailed implementation involves using the MPF construct CSHIFT, which uses fast 
X-Net communications. 

The computational time needed per time step of the molecular dynamics 
simulation on this system is approximately given by: 

CPU = AN + BNM2 (19) 

Here, A is the computing time needed per molecule in the Verlet propagating step 
and Β is the time needed per X-Net communication for each pair of particles. M is 
the number of lattice spacings included in the force evaluation, which depends in 
turn on Rc. For system with the nearest-neighbor interactions M = 1, second 
nearest-neighbor M = 2, etc. 

The scaling of computer time with problem size and number of PE's are 
important performance indicators for massively parallel computers. Here, the 
scalability of the M D code is tested with respect to both the number of processor 
elements (PE's) and the number of atoms. For the 2D lattice system, the CPU 
performance of the parallel program versus the number of atoms is shown in Figure 
1. The calculation was done on the MP-2204. A linear dependence on the number 
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of atoms is observed. The peak CPU performance for MP-2204 is 600 Mflops for 
double precision floating point algorithms. The parallel version of this program 
running on the MP-2204 can reach a speed of 300 Mflops, which is three times 
faster than a single processor of the Cray Y - M P . In this particular application, we 
have achieved 50% of the MP-2's peak performance. 

M depends linearly on RCy and from Eq. (15), we can see that the computational 
time is proportional to the square of the interaction cut-off radii of the potential 
function. This expected behavior is in fact observed, as indicated in Figure 2. 

Photodissociation Dynamics of 12 in Rare Gas Solids. The system considered in 
this study consists of a single I2 molecule embedded in a double substitutional site 
of a face-centered cubic Ar lattice, consisting of a cube of 512 atoms with periodic 
boundary condition. The interaction potential function for the system is given by: 

V = Vh+VAr + Vh.Ar, (20) 

where the individual terms correspond to the I-I interaction potential, the Ar-Ar 
interaction potential, and the interaction potential between the 12 and the Ar atoms, 
respectively. For ground state 12, we use a Morse potential to model the I-I 
interaction: 

Vh (Λ) = De[\- exp(-/J(* - Re)]2, (21) 

where De is the dissociation energy of ground (X) electronic state, β is the 
potential range parameter, and Re is the equilibrium distance of l2-
Photodissociation is modeled in this system by an instantaneous transition from the 
X ground state to the C repulsive excited electronic state. The 12 excited state 
potential function is given by: 

V / a ( /0 = Aexp(-aK), (22) 

where R is the instantaneous I-I distance and the parameters A and a are obtained 
by fitting spectroscopic data (38). The nonbonded Ar-Ar and Ar-I interactions are 
modeled by pairwise Lennard-Jones potentials, given by: 

V(r) = 4£\ (fHf (23) 

The potential parameters are given in Table 1. The photodissociation dynamics of I2 
in solid Ar were treated using classical mechanics (39,40). To prepare the initial 
conditions for the photodissociation, the system was initially equilibrated at 15 Κ 
with I2 in its ground electronic state. The positions and velocities of each atoms 
were written out to a file every 50 fs. The configurations and velocities were read 
in from this file as the initial conditions for ensemble of trajectories. The 
photodissociation process was then simulated by suddenly switching the 12 potential 
from its ground state Morse form to the exponential form of the excited repulsive 
potential surface. 
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1600 

1400 h 

0 50 100 150 200 250 300 

Number of atoms (Thousand) 

Figure 1. CPU benchmark performance for the two dimension lattice with 
nearest-neighbor interaction on MP-2(2204). The plot shows the CPU 
time versus number of atoms. Note that all the timing results are for the 
CPU time of integrating 400 cycles using the velocity Verlet algorithm. 

Cut-off Radii (Lattice Constant) 

Figure 2. Data Parallel Unit (DPU) computational time as a function of 
interaction cut-off radii for the simulation of 2d lattices with 4096 (64x64) 
particles. 
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1000 
/-—\ 

10 
1 2 4 8 16 
Number of PE's (1024) 

Figure 3. CPU time of benchmark calculation for the parallel program 
versus the number of processor elements used on MP-1 for system with 
512 atoms. 
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Figure 4. CPU performance for the parallel program versus the number of 
atoms on MP-2204 for an N-body system. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 2

9,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



13. LI ET A L Classical and Quantum Molecular Dynamics Simulation 197 

Table 1. Potential parameters. 

Potential Parameters Values 

De 15,370 cm" 1 

re 
2.55 À 

β 1.77 À" 1 

A 5,10 x l O 7 cm" 1 

a 3.29 A " 1 

£Ar-Ar 83.26 cm" 1 

0~Ar-Ar 3.405 Â 

εΐ-Ατ 130.24 c m ' 1 

σΐ-Ar 3.617 Â 

To obtain optimal performance on a SIMD massively parallel computer, we 
need to keep the operations performed on the data as regular as possible. This is not 
a problem for a homogeneous system like pure Ar. For an atomic system with a 
molecular impurity, such as 12 in solid Ar, there are three different kinds of 
interactions, as indicated in Eq. (20). To make effective use of the SIMD 
architecture, we use masking operations for each type of interaction. For 
interactions between Ar atoms, the Lennard-Jones potential parameter ε is 
represented by an NxN matrix with following matrix elements: etj = £Ar_Ar if i and 
j represent the Ar atoms and ε.ή = 0 otherwise. Similar matrices are constructed for 
the interactions between Ar and I, and for the Morse oscillator parameters 
representing the interaction between I atoms. The potential energy and force 
evaluations can be written in a very concise form, and the force evaluation can be 
implemented more efficiently, but at the expense of computing terms (albeit in 
parallel) which do not contribute to the interparticle forces. 

The dependence of the computational time on the number of particles can be 
written as: 

CPU = AN + CN if N(N-l)/2 < Py 

(24) 
CPU = AN + CN2 ifN(N-l)/2 > P, 

where Ν is the number of particle in the system and Ρ is the number of processors. 
For an N-body system with all pair interactions, the benchmark calculation of the 
parallel code versus the number of atoms simulated on MP-2204 is shown in Figure 
3. In this calculation, we have mapped each pair of interactions to a PE. The 
number of pairwise interactions is N(N-l)/2, where Ν is the number of atoms. For 
MP-2204, there are 4K PE's. For systems with more than 64 atoms, the parallel 
virtual concept, which uses the PE memory as virtual processors, is employed. The 
maximum number of atoms one can include in the simulation is limited by the size 
of local PE memory. For the MP-2204 with 64 KBytes of local memory, we can 
simulate up to 1200 atoms. When using virtual PE's, the relation between the CPU 
time and the number of atoms is no longer linear. 

We now consider the scalability of the CPU performance with respect to the 
number of PE's. Figure 4 shows the CPU time of the MP-1 versus the number of 
PE's for a 512 atom system with all pairwise interactions included. A nearly linear 
relation was obtained, which indicates very good scalability performance. 
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Table 2. The CPU benchmark results of the classical M D code of 512 
atoms with all pair interactions for 400 cycles. 

Computer C P U Time Mflops 
(second) 

Peak 
Mflops 

%Peak 

MP-1204 63 62 128 48 
MP-1208 32 124 275 45 
MP-2204 23 172 600 29 
MP-2216 7.7 510 2400 21 
Cray Y - M P (unicos) 13 151 330 46 
IBM ES9000 (ADC) 74 26.5 50 53 
DEC Alpha 3000/400 102 19.2 100 19 

SGI Indigo (R4000) 185 10.6 
Convex C240 207 9.5 50 19 

Table 3. The CPU benchmark results of the quantum molecular dynamics 
simulation (TDSCF code) of 17 atoms with a grid size of 256 integrated 
for 100 cycles. 

Computers CPU Mflops Peak % Peak 
(second) Mflops 

MP-2204 23 172 600 29 
MP-2216 7.7 510 2400 21 
Intel Touchstone Delta* 16 255 640 39 
Cray Y - M P (unicos) 13 151 330 46 

* The timing result is for a 16-node partition. 
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Quantum System: Molecular Hydrogen Clusters. We now apply the TDSCF 
approach to a model system consisting of a collinear ÇtÎ2)ll cluster to demonstrate 
the potential use of massively parallel computers in many-body quantum 
simulations. The system under consideration consists of a collinear chain of 17 
particles with nearest-neighbor interactions. We simulate the dynamics of the para-
hydrogen species; i.e., H2 is in the rotational ground state (J=0). The ratio of the 
minor to the major axis of the ellipsoidal electronic charge distribution of the H2 
molecule is very close to unity (41). Thus, molecular para-hydrogen can be 
represented, for simplicity, as structureless spheres. We denote by xi the Cartesian 
coordinate of the atom ι and by req the equilibrium distance between neighboring 
atoms. The interaction potential between H2 molecules is modeled by a Morse 
potential function. Thus, the total potential function of the model cluster system is 

ν{χν---,χη)^Όχΐ-εβ{ΧΜ-χ'-^]\ (25) 
i 

The Morse potential parameters are De=32.39K, )3=1.65Â~1, and r^=3.44A. These 
parameters were obtained by fitting the more accurate but complicated potential 
function available from the molecular beam data (42) and ab initio electronic 
structure calculations (43-45). 

The dependence of the computational time on the number of grid points and 
number of modes can be expressed as follows: 

CPU = A\nM i f M n < P , 
(26) 

An 
CPU = — In M if Mn > P, 

Ρ 

where M is the number of grid points for the wave function discretization, η is 
number of TDSCF modes in the system and Ρ is the number of processors. These 
expressions result from the fact that both fast Fourier transforms and summations 
over PE's, which are required in the evaluations of the Hamiltonian operation and 
the TDSCF mean field potential functions, scale as InM. 

Comparison with the Cray Y-MP and Other Computers. Table 2 shows the 
benchmark calculation of the 512 atom system on a selection of computers. 
The implementation on the vector machines was coded in a highly vectorized form 
in Fortran 77. The data parallel version of the code on MP-2216 ran 1.7 times faster 
than the Y - M P for this problem, and was estimated to be running at about 250 
Mflops. 

MIMD Computer implementation. The TDSCF approach was also implemented 
on a MIMD computer, the Intel touchstone Delta. Here we assign each single mode 
wave function to a node. The communication required for evaluating the mean field 
potential function was done using an explicit message passing scheme. The timing 
results for both the SIMD and MIMD implementations of the TDSCF approach are 
listed in Table 3. 

Summary and Future Work 

In this paper, Parallel versions of classical and quantum molecular dynamics 
simulation codes on the MP-2 were described, which achieve a substantial speed-up 
over a sequential version of the program on conventional vector or scalar machines. 

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

G
U

E
L

PH
 L

IB
R

A
R

Y
 o

n 
Ju

ne
 2

9,
 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ch

01
3

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



200 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

The classical M D code is used routinely for production runs in our studies of rare 
gas liquid and photodissociation process in solid state materials. The performance 
of 1.7 times of a single processor of Cray Y - M P is obtained. Aided by the parallel 
constructs build into the data parallel programming language Fortran 90, we find 
the massively parallel computer to be a powerful research tool for molecular 
dynamics simulation. 

In our present implementation of mapping pairwise interactions onto each PE, 
the system size (i.e., number of atoms) amenable to simulation is limited to being 
less than Ν = 1300 on the MP-1208. Alternative mapping schemes need to be used 
for simulating very large systems. One of these mapping schemes is based on 
associating one atom to each PE and using the Verlet neighbor-list or link cell 
method to keep track of interacting atoms (46). Efficient parallelization of 
neighbor-list generation is a problem which warrants future study. 
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Chapter 14 

Biomolecular Structure Prediction Using 
the Double-Iterated Kalman Filter 

and Neural Networks 

James A. Lupo, Ruth Pachter, Steven B. Fairchild, and W. Wade Adams 

Materials Directorate, Wright Laboratory, W L / M L P J , 
Wright-Patterson Air Force Base, O H 45433 

The parallelization of the PROTEAN2 molecular structure 
prediction code has been completed for the Thinking Machines, Inc. 
CM-5. Benchmark and parallel performance analysis results are 
summarized and compared with those obtained on a Cray C90 using 
multiple processors in autotasking mode. The choice of an optimal 
machine is shown to be dependent on the size of the model studied. 

In our continuing efforts towards the design of non-linear optical 
chromophore containing biomolecules (1,2,3,4) that enable the flexibility of 
controlling structure, an integrated computational approach has been developed. 
First, a neural network is trained to predict the spatial proximity of C a atoms that 
are less than a given threshold apart. The double-iterated Kalman filter (DIKF) 
technique (coded in PROTEAN2 (5)) is then employed with a constraints set that 
includes these pairwise atomic distances, and the distances and angles that define 
the structure as it is known for the individual residues in the protein's sequence. 
Finally, the structure is refined by employing energy minimization and molecular 
dynamics. Initial results for test cases demonstrated that this integrated approach 
is useful for molecular structure prediction at an intermediate resolution (6). In 
this paper, we report the parallelization and other aspects of porting PROTEAN2 
to the CM-5 and the Cray C90. 

Massively parallel processor (MPP) systems use a relatively new 
computer architecture concept that may enable significant speedup increases by 
allowing a single user to harness many processors for a single task. Experience has 
shown, however, that the suitability of any given program to parallelization is 
highly dependent on the problem being solved and the machine architecture. 
Ultimately, speedup is limited by Amdahl's law expressed as: 

0097-6156/95/0592-0202$12.00/0 
© 1995 American Chemical Society 
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14. LUPOETAL. Double-Iterated Kalman Filter and Neural Networks 203 

where ρ is the number of processors, S is the speedup factor, and a is the 
percentage of computing done sequentially, i.e. on one processor (7). Note that 
for /?~1, S increases linearly, while for large /?, the nonlinear effects may be 
dominant, even i f the percentage of computing done on one processor may 
decrease due to the large parts of sequential code. 

As a result of Amdahl's law, many programs show significant non-linear 
scaling behavior because they contain large parts of sequential code, so that the 
execution speed increases less than the increase in the number of processors. 
Thus, while the new MPP machines may have impressive theoretical performance 
figures, their actual performance is problem dependent, and care must be taken to 
find the best machine on which to run a problem. It also implies that considerable 
effort is required to find efficient parallel algorithms. In this work we discuss 
porting issues, while performance results are summarized that compare the CM-5 
with the multiple node Cray C90. 

Results and Discussion. 

1) Approach. In the first stage, an expert system was used to develop the training 
set consisting of specific protein structures obtained from the Brookhaven Protein 
Data Base (PDB), with the data files being preprocessed to extract the backbone 
atomic coordinates and calculate the appropriate torsion angles. Secondary 
structural motifs are determined by searching for sequential residues whose 
torsions fall within a user defined tolerance. A neural network learns to predict 
secondary structure (8,9), but moreover the spatial proximity of C a atoms. 
Tertiary structure information is generated in the form of binary distance 
constraints between the C a atoms, being 1 i f their distance is less than a given 
threshold, and 0 otherwise. The proteins used in the training set were the first 48 
of the set collected by Kabsch and Sander (10), while several of the last sixteen 
proteins in this set were for testing (total of 8315 residues). A feed forward neural 
network with one hidden layer was used, and backpropagation was the learning 
algorithm. Details of this neural network application are described elsewhere (11). 

The DIKF (12,13) algorithm is subsequently employed to elucidate the 
structure using a data set that includes these pairwise atomic distances, and the 
distances that define the chemistry and stereochemistry of the molecular structure. 
It is notable that the neural network constraints set was found to be adequate 
compared to modeling with an exhaustive set of all C a pair distances derived from 
the crystal structure of Crambin (14). 

In particular, the structural molecular model of a polypeptide consisting of 
Ν atoms is described by the mean cartesian coordinates χ and the covariance 
matrix C(x). The elements of C for any two atoms i,j are symmetric: 

αχός/ Gxiyj axzj 

C(Xij) = <jyxj °yyj oyzj 
ozocj aziyj azdj 

(2) 
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204 PARALLEL COMPUTING IN COMPUTATIONAL CHEMISTRY 

The matrices on the diagonal of the covariance matrix (C(xa)) describe the extent 
of three dimensional uncertainty in the position of the z-th atom, and the 
covariance between two variables (the non-diagonal elements C(xtj)) estimates 
their correlation. Distance and dihedral angle measurements are given by: 

z=h(x) + v (3) 

where ζ is the observed value of the data, h(x) expresses the mathematical 
relationship between the state vector variables and the distance and dihedral angle 
values, and ν represents the variance of the data. 

Given this information, a sequential linear estimator for the minimum variance 
estimate of the state is obtained by the extended Kalman filter for non-linear 
measurement functions (13): 

x(+) = x(-) + K[z-h(x(-))] 
(4) 

C(+) = C(-)-KHC(-) 

where (-) signifies a previous structural representation to be sequentially 
updated to (+). The criterion for the choice of the Kalman estimator gain matrix 
K, given by: 

Κ = C(-)HT[HC(-)HT + v / 1 (5) 

is to minimize a weighted scalar sum of the diagonal elements of the error 
covariance matrix C. The term within the inverse in the expression for Κ 
represents the variance of the observed measurement (C( v) = C(h( x)+ v)). The 
first-order Taylor approximation of C(h(x)) is HCHT, where Η is the derivative 
of the data model Λ, and HT is the transpose of H. The derivatives of the 
distance model are calculated analytically, while the derivatives of the dihedral 
angle data model are approximated by using a finite difference calculation. Note 
that in addition to the optimality of Κ contained in its structure, it can also be seen 
as the ratio between the uncertainty in the estimate and that of the measurement. 

The extended Kalman filter approach is used to obtain higher-order non
linear filters by an iterative process: 

x(+)k = x(-) + Kk{z-[h(x)k_x) + H(x(-)-x(+)k_x)]} (6) 

with a similar expression for C(+)k for any iteration k. This iterative procedure 
is carried out for each one of the distance and dihedral angle constraints. However, 
since the filter is not optimal in the non-linear case (h(x) in equation (3)), residual 
inaccuracies may still result. Therefore, the mean positions obtained after all data 
are introduced are used for another cycle of updating. The covariance matrix is 
reset to its initial large value in order to allow atoms freedom to move in response 
to the constraints, and all measurements are re-introduced into the system for each 
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of these doubly-iterated cycles. The successive cycles are repeated until all of the 
constraints are satisfied to within a pre-set threshold of standard deviations from 
the error e given by: 

e=¥x)^~y^ (7) 

Applications of the DEKF technique indicate that a known structure can be 
reproduced to within a small RMS error even when a limited data set is used 
(15,16). Several applications using N M R NOE data utilizing this novel method 
proved the approach successful (17,18,19). Note that the input to PROTEAN2 is 
automated (20). 

a) Crambin and B P T I Study. The neural network results for Crambin 
(6) were used for the application with the DIKF. The model system consisted of 
327 atoms and pseudo-atoms, 1122 distance constraints, including bond lengths, 
distances implied by bond angles, non-bonded distances within well-defined 
secondary structural motifs, and 37 dihedral angle constraints. A comparison with 
the experimental X-ray structure (12) results in total all-atom average RMS of 
2.4Â. Similarly, we have tested the genetically engineered Eglin-C (21), and BPTI 
(22/ The model consists of 454 atoms, with 1550 distance and 60 dihedral angle 
constraints. Good convergence was obtained (Figure 1). A comparison with the 
experimental X-ray structure (22) results in a total all-atom average RMS of 3.5À. 

0 0 1 0 20 40 60 60 100 120 140 
Iteration 

Figure 1 : Average error (SD) vs. number of iterations 

These results indicate that such an integrated approach may be useful for 
an intermediate biomolecular structure prediction, to be further refined by energy 
minimization and molecular dynamics. Thus, the code has been ported and 
evaluated the study of larger molecular systems. 
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2) Ports. Portability is an important software engineering issue. In the case of 
distributed memory systems, each architecture has its own set of system library 
routines which support the passing of data between processors. A program 
written explicitly for one architecture will have to be modified when using the 
library of another architecture. Given the pervasive nature of data exchange 
between processors, this may entail an extensive effort. The message passing code 
required also tends to obfuscate the programs general logic flow. These issues 
were resolved in this work. 

A standard high-level language with embedded compiler directives is 
utilized. Indeed, the characteristics of the CM-5 necessitated the use of Fortran-
90. The CM-5 is a distributed memory parallel processor and supports both data 
parallel and message passing models of parallel programming. However, the 
system software currently does not allow message passing programs to access the 
vector processing units on the processing elements. The vector units are currently 
supported only by the Fortran-90 compiler, which uses the data parallel 
programming model. The program should be portable to other systems 
supporting such a compiler, although the Fortran-90 version of PROTEAN2 has 
not yet been tested on other systems. The number of memory utilization 
compiler directives embedded in the source code and the dependence on the 
CMSSL libraries, suggests the amount of porting effort will be strongly machine 
dependent. 

The PROTEAN2 (5,23) molecular structure code was ported to the CM-5 
by translating it from Fortran-77 into Fortran-90. The initial port of PROTEAN2 
to the CM-5 was reported earlier (8). However, a system bug in the C M 
Scientific Support Library (CMSSL) prevented the program from running large 
problems on more than 32 nodes. The source code was thus gradually reduced to 
a set of 14 lines of Fortran which replicated the bug. Working from this 
demonstration program, the bug in CMSSL could be identified and was thereafter 
released in a new version in November 1993. A full set of benchmarking runs were 
then performed on the CM-5. 

At the same time, experimentation with multiprocessing on a Cray C90 
was underway with the fully vectorized version of PROTEAN2. This involved 
selection of the proper compiler options to enable autotasking, and setting up the 
correct environment variable (NCPUS) to specify the number of processors 
desired for a run. Without additional hand optimization, the autotasking support 
from the compiler is essentially limited to loop unrolling, with sub-loops assigned 
to different processors. The same series of problems run on the CM-5 were run 
with two C90 processors. 

3) Program Performance. Two molecular models were selected for the 
benchmark runs, specifically the genetically engineered protein N-acetyl Eglin-C 
(Eglin-C), that contained 530 atoms, with a total of 1776 constraints. A second 
system was based on the trp repressor (Trp), and contained 1504 atoms and 6014 
constraints (18). Although both the CM-5 and the C90 systems are multi-user, 
the CM-5 timing functions are known to be impacted by system load. The timing 
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figures presented should therefore be taken as indicative of typical production 
runs rather than the absolute best performance. 

The timing figures listed by the CM-5 report the total time consumed by 
the service partition, while the C90 reports the total time consumed by all 
processors assigned to a job as well as the connect time. In the following 
comparisons, C90 connect time was assumed to be an equivalent metric to the 
total time reported by the CM-5. The C90 also reports the time that is consumed 
running on only one processor and the time spent running concurrently on 
multiple processors. This makes it easy to gauge parallel performance, but since 
internal timing instrumentation reports total CPU time, it also requires that 
internal times are converted to equivalent connect times. For a job run on two 
nodes, the following equations hold. 

T^(2-Cf)Ttotal ( 8 ) 

τ - τ 
1 2 1 total 

(,-ΐ) 
V c f) 

(9) 

and 

TC = T,+T2 (10) 

where Ttotal is the total C90 CPU time, Tj is the CPU time on one node, Τ2 is the 
concurrent CPU time on each of the two nodes, Cf is the concurrancy factor, and 
Tc is the C90 connect time. 

(a) Timing Results. The times reported here are the times it takes to 
complete one full iteration cycle, the time spent in the DIKF portion of the code, 
and the time spent in the van der Waals correction portion (KVDW). The Eglin-C 
model was set up to run on 32, 128, and 256 nodes of the CM-5, while the Trp 
model was run on 128, 256, and 512 nodes. Both models were run on two nodes 
of the C90. The CM-5 times are shown in Table I while the C90 times are in 
Table II. 

Comparing the C90 connect times with the CM-5 total times, it is 
observed that the two C90 nodes are 3.8 times faster than 32 CM-5 nodes on the 
Eglin-C problem. However, 256 nodes on the CM-5 are 2.2 times faster than two 
C90 nodes on the Trp problem. In fact, the single node time for the Tip model on 
the C90 was 6748 seconds, and the concurrent time on two nodes was 5540 
seconds. The single CPU sequential time on the C90 is longer than the CM-5 
time. Thus, at best, the C90 could use all 16 processors and reduce the connect 
time to 7095 seconds, which is 1.25 times longer than the CM-5 time. The CM-5 
is clearly the faster machine for larger problems, while the C90 remains optimal for 
smaller problems. 
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Table I: CM-5 PROTEAN2 timings for one full iteration (sec) 

Model Nodes Total Time DIKFTime KVDWTime 

Eglin-C 32 449 177 272 

128 436 171 265 

256 492 218 274 

Trp 128 6799 1031 5768 

256 7098 1417 5681 

512 8106 2216 5890 

Table II: C90 PROTEAN2 timings for one full iteration (sec) 

Model Nodes Total DIKF KVDW Con- Connect 
Time Time Time currancy Time 

Factor 

Eglin-C 2 153 131 22 1.30 118 
Trp 2 17790 13788 4002 1.45 12288 

(b) Parallel Performance. The CM-5 Fortran compiler allows for the 
collection of performance profile information. Additional information can also be 
collected from the PRISM interactive debugger. On the C90, figures reported by 
the Job Accounting system allow one to compute some of the same metrics. Of 
particular interest is the parallel efficiency seen on the two machines. For the 
Eglin-C model, the C90 achieved a parallel efficiency of 46% while the CM-5 
reached 66%. Both machines improved on the larger Trp model, with the C90 
reaching 62% and the CM-5 reaching 82%. 

Communications is an issue on the CM-5, but not on the C90 since it is a 
shared memory system. One performance measure considers the ratio of 
communications time to CPU time. For the Eglin-C model, the ratio was 0.51, 
while the Trp model had a ratio of 0.72. Considering the parallel efficiency figures 
and the communications to CPU times ratios, it is clear that the CM-5 performs 
better over all, but becomes communications bound. This explains the lack of 
scaling seen in any of the models on the CM-5. Larger problems will make better 
use of the CPU's at the expense of increasing communications loads. 
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14. LUPO ET AL. Double-Iterated Kalman Filter and Neural Networks 209 

Conclusion. 

The PROTEAN2 program makes good use of the data parallel programming model 
on the CM-5. It does not scale well with the size of problems so far considered, 
but it is efficient even though communications bound. For problems of the size of 
the Trp model, it is clearly much preferred over the C90. The C90, however, is 
not without merit, and does run smaller problems much faster. Given the 
availability of both machines, testing a new problem on both should be done prior 
to conduction production runs. It should be noted that the creation of an 
executable autotasking version of PROTEAN2 on the C90 took less than four man 
hours, while nearly two man months were expended getting the Fortran-90 version 
to function on the CM-5. No hand optimization has been done to the C90 
version, suggesting there is room for future improvements. 
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Ab initio programs, parallel, 
object-oriented implementation, 47-61 

Ab initio quantum chemistry on 
workstation cluster 

analysis of state information, 65-66 
code structure, 66-67 
experimental description, 63-64 
future work, 71 
Gaussian architecture, 64 
Linda fundamentals, 65 
shared-memory Gaussian, 64-65 
test cases, 68-71,73-74 

Abstract data types, description, 49 
Algorithmic motifs 
domain decomposition, 8-10 
examples, 7 
loop splitting, 8-9 
master-worker, 11-12 

Algorithm(s) 
molecular dynamics simulation, 

151-167 
parallel computing 

granularity, 7-8 
levels, 7 
motifs, 7-12 

All-to-all communication, definition, 9 
Amdahl's law, description, 13 
Analytic Hessians 
steps, 24 
timing example, 24-25 

Anharmonic two-dimensional lattice 
model system, simulation on distributed-
memory massively parallel 
computers, 193-194,195/ 

Applications 
object-oriented implementation of 

parallel ab initio programs, 53-59 
parallel GAMESS 

B N prismanes, 29-31,32/ 
cyclophanes, 33 
glycine isomerization, 37-38,39^0/ 
graphics, 41,43-45 
phosphatranes, 35,37 
silatranes, 33,36 
tetrasilabicyclobutanes, 31,34/,35r 
transition metal complexes, 38,41,42/ 

Atomic to molecular orbital integral 
transformation, parallel 
implementation of GAMESS, 21-22 

Β 

Basis functions, definition, 98 
Benchmark simulation of Lennard-Jones 

systems, use of parallel molecular 
dynamics algorithms, 114-130 

Biomolecular structure prediction 
development of computational 

approach, 202 
use of double-iterated Kalman filter and 

neural networks 
comparison to Cray C90, 206-208 
double-iterated Kalman filter algorithm 

approach, 203-205 
performance 
parallel performance, 208 
timing results, 206-208 

portability, 206 
Biorthogonalization, description, 85 
Blocked distribution, description, 9 
B N prismanes, potential energy surface 

study using parallel GAMESS, 
29-31,32/ 

Bond potential, calculation, 156 
BPTI, biomolecular structure prediction 

using double-iterated Kalman fdter 
and neural networks, 205 

Brownian dynamics simulation, 
parallelization, 170-183 

Brownian dynamics trajectory, 
parallelization with Poisson-
Boltzmann, 182,183/ 

C 

C++, advantages and disadvantages as 
object-oriented language, 52-53 

Cage compounds, application of parallel 
GAMESS, 31,33,37 

Cell multipole method, description, 157 
C H A R M M force field, description, 

154-155 
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Circle intersection method of PDM, 
computation time, 163-164 

Classical molecular dynamics simulation 
mapping each atom onto each virtual 

processing element, 191-192 
mapping each pair of interactions onto 

each virtual processing element, 192 
theory, 188-189 
use on distributed-memory massively 

parallel computers, 186-200 
C M - 5 , biomolecular structure prediction 

using double-iterated Kalman filter 
and neural networks, 202-208 

Coarse grained, description, 7 
Code optimization effort, identification 

of operations that dominate quantity 
being optimized, 63 

COLUMBUS program system 
description, 76-77 
parallelization, 75-82 

Computational chemist(s), demands 
placed on computers, 1 

Computational chemistry applications, 
parallel computers, 1 

Computationally derived chemical and 
physical properties, importance, 97 

Continuum models 
computer demands, 170-171 
simulations of solvent and secondary 

solute species, 170 
Coordination model, description and 

examples, 6 
Coulomb potential, calculation, 156-157 
Cray C90, comparison to CM-5 for bio

molecular structure prediction, 206-208 
Cyclic distribution, description, 8 
Cyclopentadienyl anion, calculation of 

resonance energy, 94-95 
Cyclophanes, application of parallel 

GAMESS, 33 

D 

Data distribution, 152-154 
Data parallel implementations of molecular 

dynamics simulation 
classical molecular dynamics simulation, 

191-192 

Data parallel implementations of molecular 
dynamics simulation—Continued 

quantum molecular dynamics simulation, 
192-193 

Data parallelism, description and example, 6 
Data sloshing, description, 2 
1,6-Didehydro[10]annulene, calculation 

of resonance energy, 94-95 
Distance class algorithm 
advantages, 160 
classes, 160-161 
concept, 160 
performance, 161-162 

Distributed-memory massively parallel 
computers, classical and quantum 
molecular dynamics simulation, 186-200 

Distributed-memory multiple-instruction 
multiple-data computers, 3 

Distributed shared memory, example, 10 
Dodecamer sequence of DNA, portable 

molecular dynamics software for 
parallel computing, 146-148 

Domain decomposition algorithm, 10 
Double-iterated Kalman filter techniques 
biomolecular structure prediction, 

202-208 
description, 202 

Dynamic load balancing, description, 12 
Dynamic typing, description, 60 

Ε 

Efficiency 
calculation, 67 
performance measurement, 13-14 
quantitative definition, 13 

Eglin-C, biomolecular structure prediction 
using double-iterated Kalman filter 
and neural networks, 205 

Eisenstat's implementation, 
parallelization of Poisson-Boltzmann 
and Brownian dynamics calculations, 
176-177 

Elapsed wall clock time, measurement, 67 
Electron transfer elements of Hartree-Fock 

and generalized valence bond wave 
functions, parallel calculations, 84-95 
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Electronic structure code(s) 
GAMESS, See Parallel GAMESS 
parallelization studies, 63 

Electrostatic(s), mathematical model, 171 
Electrostatic interactions, role in 

determination of stability of 
conformations and complexes of solute 
molecules in solution, 170 

Electrostatic potential surface around 
enzyme, parallelization of 
Poisson-Boltzmann and Brownian 
dynamics calculations, 182,183/ 

Embarrassingly parallel, description, 11 
Encapsulation, concept, 48-49 

F 

Fast multipole algorithm 
concept, 157-159 
parallel implementation, 159-160 
scalability, 157 

Fine grained, description, 7 
Force-decomposition method for molecular 

system simulation 
advantages, 121 
algorithm, 119-121 
characterization, 129-130 
description, 119,120/ 

FORMF class, massively parallel quantum 
chemistry codes, 58,59/ 

G 

GAMESS 
description, 16-17 
parallel, See Parallel GAMESS 

Gaussian Unix version, 64 
Gaussian series of programs, advantages 

and disadvantages, 62 
Generalized valence bond wave functions, 

parallel calculation of electron 
transfer and resonance matrix elements, 
84-95 

Geometric decomposition algorithm, 10 

Geometry optimization component of 
MOPAC 

evaluation 
derivatives, 103-104 
one- and two-electron elements, 102,104 

formation of Fock matrix and 
diagonalization, 102-104 

tasks, 101 
Global broadcast, description, 19 
Global sum, pseudocode, 141,144 
Global summation, description, 9,19 
Glycine isomerization, application of 

parallel GAMESS, 37-38,39^0/ 
Granularity 

description, 7 
role in effectiveness of algorithm, 8 

Graphics, parallel GAMESS, 41,43-45 

H 

Hardware, parallel computing, 2 
Hartree-Fock wave functions, parallel 

calculation of electron transfer and 
resonance matrix elements, 84—95 

Highly strained rings, application of 
parallel GAMESS, 29-35 

Implementation of efficient ab initio 
quantum chemistry programs, reasons 
for slow change, 47-48 

Incomplete Cholesky factorization, 
parallel preconditioning, 173-175 

Integral transformation of atomic to 
molecular orbitals, parallel 
implementation of GAMESS, 21-22 

Linda 
advantages for parallel programming, 63 
fundamentals, 65 
operations, 139 
placeholders, 139-140 
shared-memory access, 139 
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Links, description, 64 
Load balance, 12 
LOOP balancing, description, 18-19 
Loop splitting, description, 138 
Loop splitting algorithm 
advantages and disadvantages, 9-10 
applications, 8 
example, 8-9 

Lophotoxin, use of semiempirical quantum 
methods for geometry optimization and 
vibrational analysis calculations, 
105,108-109,110/ 

M 

MasPar MP2 massively parallel computer 
system 

hardware overview, 187 
math and data display library, 188 
programming environment, 188 
programming model, 187-188 

Massively parallel computers, distributed 
memory, classical and quantum 
molecular dynamics simulation, 186-200 

Massively parallel processor systems 
advantages, 202 
problem dependency, 202 
speedup limitations, 202-203 

Massively parallel quantum chemistry 
codes 

application of object-oriented design 
principles, 53-59 

dynamic typing, 60 
F O R M F class, 58,59/ 
M A T R I X class, 55-58 
memory management, 60 
ΜΡ2 class, 58-59 
object-oriented design, 54-55 
persistence, 61 

Master-worker algorithms, 11-12 
MATRIX class, massively parallel quantum 

chemistry codes, 55-58 
Memory management, description, 60 
Message-passing architectures, 3 
Molecular dynamics 

applications, 114 
use of parallel computers for 

simulations, 114 

Molecular dynamics algorithms, parallel, 
See Parallel molecular dynamics 
algorithms for molecular system 
simulations 

Molecular dynamics method 
classical molecular dynamics simulation, 

188- 189 
quantum molecular dynamics simulation, 

189- 190 
trajectory propagation by velocity 

Verlet algorithm, 189 
wave packet propagation by grid method, 

190- 191 
Molecular dynamics simulation 

applications, 186 
boundary conditions, 135 
compute intensive, 133 
distributed-memory massively parallel 

computers 
anharmonic two-dimensional lattice 

model system, 193-194,195/ 
comparison with other computers, 

198U99 
computer system, 187-188 
data parallel implementations, 

191-193 
experimental description, 186-187 
future work, 200 
molecular hydrogen clusters, 197 
multiple-instruction multiple-data 

computer implementation, 198i,199 
photodissociation dynamics of I 2 in rare 

gas solids, 194,196/197 
theory, 188-191 

dusty deck problem, 133-134 
importance, 151 
PMD, 152-167 
programs, 152 
requirements, 151 
role of parallel computers, 133 
steps, 135 

Molecular dynamics software for parallel 
computing, portable, See Portable 
molecular dynamics software for 
parallel computing 

Molecular hydrogen clusters, simulation on 
distributed-memory massively parallel 
computers, 199 
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Molecular mechanics methods, advantages 
and disadvantages, 98 

Molecular orbitals of wave functions, 
property calculation, 84-85 

Molecular properties, theoretical study 
methods, 97-98 

Molecular systems, simulation using 
parallel molecular dynamics 
algorithms, 114-130 

MOP A C , parallel, See Parallel MOPAC 
Motifs, algorithmic, See Algorithmic 

motifs 
MP2 class, massively parallel quantum 

chemistry codes, 58-59 
MP2 code, parallel, 25-26 
MP2 computer, description, 2 
Multiconfiguration self-consistent field 

approach for parallel implementation 
of GAMESS 

applications, 23-24 
bottlenecks in calculation, 23 
choice of starting orbitals, 22-23 
partitioning of molecular orbitals into 

three spaces, 22 
Multiple-instruction multiple-data 

computers 
description, 2 
distributed memory, 2-3 
market, 5 
shared memory, 2-3 

Multireference single- and double-
excitation configuration interaction, 
reasons for use, 75 

Myoglobin, simulation using parallel 
molecular dynamics algorithms, 126-128 

Ν 

NBSTST subroutine, parallel, 
pseudocode, 141,143/ 

Neural networks, biomolecular structure 
prediction, 202-208 

Nobornyne cyclotrimer, use of 
semiempirical quantum methods for 
geometry optimization and vibrational 
analysis calculations, 109,110/ 

Nodes, definition, 2 
Nonbond potential, calculation, 156 
Nonorthogonal configuration interaction 

approaches, advantages, 85 
Nonorthogonal wave functions, resonance 

matrix element calculation, 85 
Numerical computation, importance, 62 
Numerical method, parallelization of 

Poisson-Boltzmann and Brownian 
dynamics calculations, 171-173 

N X T V A L balancing, description, 19 

Ο 

Object-oriented implementation of parallel 
ab initio programs 

abstraction approach, 49-51 
advantages, 48 
application, 53-59 
dynamic typing, 60 
encapsulation approach, 48^49 
future, 59 
languages, 52-53 
memory management, 60 
persistence, 61 

Owner-computes filter, description, 138 

Ρ 
Parallel ab initio programs, 

object-oriented implementation, 47-61 
Parallel calculation of electron transfer 

and resonance matrix elements of 
Hartree-Fock and generalized valence 
bond wave functions 

algorithm, 87-88 
C++ programming language, 92 
computational theory, 86-87 
design goals, 86 
load balancing, 91-92 
pipeline algorithm, 88-89 
program architecture, 92-93 
timing tests, 94-95 
Tool Command Language enabled 

objects, 93 
Tool Command Language interpreter, 93 
truncated wave front, 89-90 
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Parallel code, debugging, 19-20 
Parallel computers 

architectures, 2 
computational chemistry applications, 1 
cost effectiveness of hardware, 1 
examples, 3-5 
hardware, 2 
importance, 75 
performance measurement, 12-14 
portable molecular dynamics software, 

133-149 
programming, 5-7 
simplifications to begin, 14 
software costs, 1 

Parallel computing 
algorithms, 7-12 
definition, 1 

Parallel GAMESS 
advantages and disadvantages, 20 
analytic Hessians, 24—25 
applications, 29-45 
atomic to molecular orbital integral 

transformation, 21-22 
communication software, 17-18 
computational bottleneck 

identification, 18 
considerations, 18 
debugging parallel code, 19-20 
description of GAMESS, 16-17 
future work, 26 
global broadcast, 19 
load balancing methods, 18-19 
multiconfiguration self-consistent field 

approach, 22-24 
parallel MP2 code, 25-26 
self-consistent field parallelization, 

20-21 
single-program multiple-data model, 17 
stub routines, 20 
summary, 26 

Parallel molecular dynamics algorithms 
for molecular system simulations 

benchmark simulation of 
Lennard-Jones systems, 124-126 

characteristics of systems, 129-130 
computational aspects, 115-116 

Parallel molecular dynamics algorithms 
for molecular system simulations— 
Continued 

experimental description, 114-115 
force-decomposition method, 119-121 
myoglobin, 126-128 
replicated-data method, 116-119 
spatial-decomposition method, 121-124 

Parallel MOPAC 
geometry optimization component, 

101-104 
structure, 100-101 
task distribution, 100-101 
vibrational analysis component, 

103-104 
Parallel MP2 code, transformation, 25-26 
Parallel NBSTST subroutine, pseudocode, 

141,143/ 
Parallel preconditioning, parallelization 

of Poisson-Boltzmann and 
Brownian dynamics calculations, 
173-175 

Parallel programming, difficulty, 1 
Parallel semiempirical methods 

code memory requirement limitation, 109 
code performance, 105,106/ 
future research, 111 
geometry optimization component, 

101-104 
instability limitation, 109,111 
method description, 99-100 
Mflop rate vs. size of molecular system 

for geometry optimization and 
vibrational analysis calculations, 
109,110/ 

molecular structures, 105,107/ 
parallelization vs. tasks of geometry 

optimization calculation, 
105,108/109 

speedup vs. number of processors 
geometry optimization calculation, 

105,108/ 
vibrational analysis calculation, 

109,110/ 
structure and task distribution, 100-101 
vibrational analysis component, 103-104 
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Parallel WESDYN program 
programming environment, 138-140 
pseudocode 

global sum, 141,144 
master process, 140-141 
NBSTST subroutine, 141,143/ 
owner-computes filter, 144-145 
WESDYNO subroutine, 141,142/ 
worker process, 141 

TCGMSG version, 145-146 
Parallelism, potential in scientific 

applications, 186 
Parallelization 

COLUMBUS program system 
benchmark calculations, 80-81 
dynamic load balancing improvements, 

79-80 
efficiency, 81 
experimental description, 75-76 
future work, 82 
global arrays, 79 
overall efficiency, 77 
previous research, 76-77 
speedup curves, 80-81 
virtual disk and data compression, 

77-78 
Poisson-Boltzmann and Brownian 

dynamics calculations 
applications, 182,183/ 
Brownian dynamics simulations, 

177-178 
Eisenstat's implementation, 176-177 
experimental description, 170 
mathematical model of electronics, 171 
modification, 176 
numerical method, 171-173 
parallel preconditioning, 173-175 
performance, 179-181 
random number generator, 178-179 
scaling, 176 

self-consistent field programs, 75 
Parallelized PROTEAN2, biomolecular 

structure prediction, 202-208 
Patches, definition, 155-156 
Perfectly linear speedup, description, 13 
Performance measurement 
efficiency, 13-14 
load balance, 12 

Performance measurement—Continued 
speedup, 13 

Persistence, description, 61 
Phosphatranes, application of parallel 

GAMESS, 37 
Photodissociation dynamics of I 2 in rare 

gas solids, simulation on distributed-
memory massively parallel computers, 
194,196/197 

Pipeline algorithms, description, 5 
Place holders 
examples, 139-140 
specification, 139 

PMD for molecular dynamics simulation 
circle intersection method, 163-164 
computation time, 163-164 
data distribution, 152-154 
design principles, 152 
distance class algorithm, 160-162 
fast multipole algorithm, 157-160 
future work, 166 
goal, 152 
implementation, 165 
molecular structure, 155-156 
performance, 165-166,167/ 
potential function, 155-156 
principal components, 164—165 
solvent accessible area, 162-163 

Poison pill, description, 11 
Poisson-Boltzmann calculations, 

parallelization, 170-183 
Portable molecular dynamics software for 

parallel computing 
dodecamer sequence of DNA, 146-148 
dusty deck problem, 133-134 
future work, 149 
guidelines, 134 
parallel WESDYN program, 138-145 
sequential WESDYN program, 135-138 
software engineering problems, 134 
TCGMSG version of parallel W E S D Y N 

program, 145-146 
Programming environment, 6-7 
Programming model 
data parallelism, 6 
description, 5 
importance, 6 
task parallelism, 5-6 

D
ow

nl
oa

de
d 

by
 8

9.
16

3.
35

.4
2 

on
 J

un
e 

28
, 2

01
2 

| h
ttp

://
pu

bs
.a

cs
.o

rg
 

 P
ub

lic
at

io
n 

D
at

e:
 M

ay
 1

7,
 1

99
5 

| d
oi

: 1
0.

10
21

/b
k-

19
95

-0
59

2.
ix

00
2

In Parallel Computing in Computational Chemistry; Mattson, T.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1995. 



INDEX 221 

Propagation, wave packet, grid method, 
190-191 

PROTEAN2, parallelized, biomolecular 
structure prediction, 202-208 

Q 

Quantum chemistry, ab initio, workstation 
cluster, 62-74 

Quantum Mechanical View, visualization 
package for parallel GAMESS, 43^15 

Quantum molecular dynamics simulation 
data parallel implementations, 192-193 
theory, 189-190 
use on distributed-memory massively 

parallel computers, 186-200 

R 

Random number generator, parallelization 
of Poisson-Boltzmann and Brownian 
dynamics calculations, 178-179 

Replicated-data method for molecular 
system simulation 

algorithm, 117-119 
characteristics, 129-130 
description, 116-117 

Replicated-data single-program multiple-
data program, description, 8 

Residues, definition, 155 
Resonance energy, calculation, 94-95 
Resonance matrix elements of Hartree-

Fock and generalized valence bond 
wave functions, parallel calculation, 
84-95 

S 

Scalability of algorithm, description, 9 
Scalable system, description, 3 
Scaling, parallelization of 

Poisson-Boltzmann and Brownian 
dynamics calculations, 176 

SCFWAVEFUNCTION 

abstraction, 50-51 
encapsulation, 49 

Self-consistent field computations, 
description, 99 

Self-consistent field parallelization, 
implementation in GAMESS, 20-21 

Semiempirical methods 
advantages and disadvantages, 98 
parallel, See Parallel semiempirical 

methods 
Semiempirical quantum methods, solution 

of molecular Schrôdinger equation, 
99-100 

Sequential W E S D Y N program 
applications, 135 
pseudocode, 135-138 

Shared-memory Gaussian, description, 
64-65 

Shared-memory multiple-instruction 
multiple-data computers, examples, 3 

Silatranes, application of parallel 
GAMESS, 35-36 

Single-instruction multiple-data computer 
advantages and disadvantages of single-

instruction stream, 2 
description, 2 
market, 5 

Single-program multiple-data model 
description, 6 
parallel implementation of GAMESS, 17 

Solvent-accessible area, simulation using 
PMD, 162-163 

Spatial-decomposition algorithms for 
molecular dynamics, description, 10 

Spatial-decomposition method for 
molecular system simulation 

advantages and disadvantages, 123-124 
algorithm, 122-123 
characteristics, 129-130 
description, 121-122 

Specialization 
abstract data type, 49 
description, 50 

Speedup 
calculation, 67 
definition, 13 
limitations, 202-203 
performance measurement, 13 
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Static load balancing, description, 12 
Strand parallel programming language, 

description, 5 
Strongly typed object-oriented languages 
advantages, 52 
examples, 52-53 

Structure prediction using double-iterated 
Kalman filter and neural networks, 
biomolecular, 202-208 

Stub routines, parallel implementation of 
GAMESS, 20 

Synchronization barrier, definition, 9 

Τ 

Task parallelism, examples, 5-6 
Task queue algorithms, 11-12 
Taxol derivative, use of semiempirical 

quantum methods for geometry 
optimization and vibrational analysis 
calculations, 105,108-109,110/ 

TCGMSG version, parallel WESDYN 
program, 145-146 

Tetrasilabicyclobutanes, potential energy 
surface study using parallel GAMESS, 
31,34/35i 

Time-dependent self-consistent field 
method, quantum molecular dynamics 
simulation on distributed-memory 
massively parallel computers, 190-200 

Topology, description, 3 
Trajectory propagation, 189 
Transition metal complexes, applications 

of parallel GAMESS, 38,41,42/ 

V 

Velocity Verlet algorithm, trajectory 
propagation, 189 

Vibrational analysis component of 
MOPAC, procedure, 103-104 

Voronoi decomposition 
advantages, 153 
description, 153,154/ 

W 

Wave packet propagation, grid method, 
190-191 

Weakly typed object-oriented languages, 
advantages, 52 

W E S D Y N program 
parallel, See Parallel WESDYN program 
sequential, 135-138 

Workstation, availability advantage, 
62-63 

Workstation cluster 
ab initio quantum chemistry, 62-74 
description, 3 
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